Computational Tools for Radiation Protection and Shielding 1165

PyNE Progress Report

Cameron R. Bates'?, Elliott Biondo?, Kathryn Huft?, Kalin Kiesling®, Anthony Scopatz?
Robert Carlsen®, Andrew Davis?, Matthew Gidden?, Tim Haines?, Joshua Howland?, Blake Huff?, Kevin Manalo*, Arielle
Opotowsky3, Rachel Slaybaughz, Eric Relson?, Paul Romano?’, Patrick Shriwise?, John D. Xia®, Paul Wilson?, and Julie
Zachman®

U Lawrence Livermore National Laboratory, 7000 East Ave L-188, Livermore, CA 94550
2 The University of California, Berkeley, 2521 Hearst Ave, Berkeley, CA 94709
3 The University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706
* Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332
> Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
® University of Chicago, 5747 S. Ellis Ave., Jones 311, Chicago, IL 60637
bates26@lInl.gov

INTRODUCTION

PyNE is a suite of free and open source (BSD licensed)
tools to aid in computational nuclear science and engineer-
ing. PyNE seeks to provide native implementations of com-
mon nuclear algorithms, as well as an interface for the script-
ing language Python and I/O support for industry standard
nuclear codes and data formats. In the past year PyNE
has added many features including a Rigorous 2-step Ac-
tivation workflow (R2S) [1], Direct Accelerated Geometry
Monte Carlo (DAGMC) ray tracing [2], Consistent Adjoint-
Weighted Importance Sampling (CADIS) variance reduction
[3], and expanded ENSDF parsing support. As a part of our
ongoing efforts to implement a verification and validation
framework we also added continuous integration using the
Build and Test Lab [4] at the University of Wisconsin. The
PyNE development team has also improved PyNE’s ease of
use by making binaries available for Windows, Mac, and
Linux through the conda package manager as well as adding
Python 3 support.

FEATURE ENHANCEMENTS
Mesh

As of v0.4, PyNE includes a mesh representation in-
terface that is used to build up geometries, store materials,
and solve spatial differential equations. This is implemented
as a layer on top of MOAB meshes [5]. In addition to the
PyTAPS interface [6], a Python interface to interact with
MOAB mesh objects, it also adds PyNE Material objects,
which allow the user to define a mix of multiple isotopes,
to volume elements as well as a generic tagging interface.
These features together form a generic, easy-to-use mesh
library that is capable of handling a plethora of nuclear
engineering problems.

The Mesh class lives in the pyne.mesh module. This
class houses an iMesh instance called mesh which comes
from PyTAPS and contains methods for native mesh op-
erations. The mats attribute is an instance of a PyNE
MaterialLibrary. This is a mapping of volume element
handles to Material objects. Tags—sometimes known as
fields—are accessible as attributes on the mesh object itself.
There are several different types of tags (IMesh, Material,

le3 .

0.5

z (cm)

0.0

—1.0

00 0.2 04 06 08 10 12 1.4 16
x (cm) le3

Fig. 1. A 2-D slice of a 3-D PyNE flux mesh of ITER plotted
in yt. This model is for demonstration purposes only.

Metadata, Computed) depending on where the data should
be stored. All tag types expose the same interface.

To do volumetric analysis and visualization, the Mesh
class is natively supported by the yt project [7]. An example
of the use of this mesh to analyze neutron flux in ITER is
shown in Fig. 1.

DAGMC Module

Direct Accelerated Geometry Monte Carlo is a compo-
nent of MOAB that facilitates Monte Carlo ray tracing on
CAD geometries [2]. A dagmc module has been added to
PyNE, providing a Python interface to these ray tracing capa-

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9-13, 2014



1166 Computational Tools for Radiation Protection and Shielding

(a) CAD model of a complex geometry [8].

(b) Volume fractions of the geometry within the mesh volume ele-
ments of an overlaid 200 x 100 x 200 Cartesian mesh.

Fig. 2. A CAD geometry and a discretized representation
created using PyNE discretize_geom(). This model is
for demonstration purposes only.

bilities. The dagmc.discretize_geom() function accom-
plishes the common task of mapping geometry cells onto a
Cartesian or tetrahedral mesh. The cell_fracs_to_mats
method of the Mesh class can be used to seamlessly create
PyNE Mesh objects tagged with materials, where the ma-
terials are mixtures of the contributions from the various
geometry cells found in each mesh volume element. This es-
pecially useful for discretizing CAD geometries onto grids
for deterministic methods. An example of this is shown in
Fig. 2.

ALARA Module

ALARA is a nuclear inventory analysis code developed
at University of Wisconsin - Madison [9]. A module has
been added to PyNE to facilitate the generation of ALARA
input and the parsing of ALARA output. PyNE Mesh objects
tagged with flux and material data can be used to generate
input. The compositions of activated materials as calculated
by ALARA can also be read back into a PyNE Mesh object.
These components can be used in mesh-based activation and
burn-up workflows.

R2S Activation Workflow

The Rigorous Two-Step (R2S) method is used to es-
timate the shutdown dose rate (SDDR) in fusion systems
from photons born from neutron activation products [10].
This method involves separate neutron and photon transport
simulations, coupled to a dedicated nuclear inventory analy-

sis code. The PyNE R2S module implements a mesh-based
R2S method and accomplishes this coupling in-memory by
leveraging the PyNE mesh, material, dagmc, mcnp, and
alara modules. The R2S module currently only supports
transport with MCNP and nuclear inventory analysis with
ALARA, but support for additional physics codes is planned.
Mesh-based photon source sampling is accomplished within
MCNP by compiling MCNP against a custom source sam-
pling library within PyNE.

CADIS Variance Reduction

The Consistent Adjoint-Weighted Importance Sam-
pling and the Forward-Weighted CADIS (FW-CADIS)
method are hybrid Monte Carlo variance reduction tech-
niques that use deterministic estimates of the forward and
adjoint flux to generate Monte Carlo weight windows
and source biasing parameters [3]. A mesh-based imple-
mentation of this method has been added to the PyNE
variancereduction module. Work is currently underway
to interface with the Denovo [11] deterministic transport
code to in order to acquire these deterministic fluxes.

Tally Class

One common requirement in processing the output of
MCNP and other nuclear engineering codes is to keep track
of multiple tallies. PyNE has added a C++ class with a
Python interface that assists users in keeping track of tally
data. The PyNE development team is working to add saving,
loading, and manipulation of these tally objects in the future.

Fluka Module

The fluka module is designed to parse the output files
from FLUKA, a fully integrated particle physics Monte
Carlo simulation package[12]. Currently, this module only
supports the parsing of USRBIN output files, which is a file
similar to a meshtal file in MCNP in that it tracks a certain
quantity over an evenly spaced volume mesh. This module
parses the USRBIN files and saves the tracked data and
percent error data as attributes of a Mesh object.

Amalgamation

While PyNE is ostensibly a Python-oriented toolkit
over two-thirds of the code base is written in C++. This
makes it possible to use many of the features of PyNE
without needing Python. In order to simplify the use of
PyNE’s C++ API we have added the ability to amalgamate
all of the C++ code into a single source and header file.
This makes it possible to add these two files to any project
in order to use much of the functionality in PyNE without
having to worry about linking multiple libraries in a separate
location. This is used in Cyclus [13] to use PyNE features
without adding Python as a dependency.

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9-13, 2014



Computational Tools for Radiation Protection and Shielding 1167

ENSDF Improvements

Previous versions of PyNE have included some ENSDF
parsing capabilities. These have been focused on extracting
half-lives and branching ratios of metastable and ground
states. This has been vastly expanded to support the parsing
of most ENSDF record types and to make level structure
and decay data available in PyNE’s C++/Python nuclear
data interface. This makes it possible to use PyNE to look
up most structure and decay data similar to online tools such
as NuDat http://www.nndc.bnl.gov/nudat2/.

We have broken down the data from ENSDF into six
distinct subsets. These include: excited level data, decay
normalization data, gamma-ray data, alpha decay data, 5~
decay, and electron capture/B* decay. In addition to infor-
mation about the radiations for all decay transitions listed
in ENSDF we have also included atomic data from the Na-
tional Nuclear Data Center to calculate X-ray emissions
from conversion electrons in gamma-ray emission and elec-
tron capture decay. Work is underway to add decay data
access to the PyNE Material object to facilitate generation
of complex sources for use in Monte Carlo transport codes.

Fission Yield Data

The latest release of PyNE includes two different sets
of fission yield data. The first is the IAEA WIMSD library
which provides fission product yields based on ENDF/B-VIL.
The second is from the IAEA Safeguards data library and
includes independent fission yields with thermal, fast, and
14-MeV neutrons for 22Th, 23U, 235U, 2°Pu, and "' Pu.

VERIFICATION AND VALIDATION

The PyNE development team is working to implement
documented verification and validation as a part of our basic
development process. This has included: ensuring all code
changes to PyNE have at least one reviewer who was not an
author, requiring unit tests for all code additions, a coding
style guide, and requiring all tests to pass on continuous inte-
gration builds before merging code changes. This issue will
be addressed in more detail in other concurrent publications.

USABILITY ENHANCEMENTS
Installation Improvements and Binary Distributions

At our first PyNE workshop a significant amount of
the instructional time was devoted to PyNE installation
and configuration. This reduced the amount of material
we were able to cover significantly. From this experi-
ence the PyNE development team came to the conclusion
that a major focus of our version 0.4 development efforts
should be on making the installation process simpler for
non-developers. The core of this effort is based around the
conda package manager. Conda is an open source package
manager that is capable of managing packages on Win-
dows, Mac and Linux. This makes it possible to use a
single package manager across all platforms. We devel-
oped a standard conda package script which can be found

at https://github.com/conda/conda-recipes. This
automates the installation of dependencies for PyNE, signif-
icantly reducing the difficulty of building and installing the
software. In addition, we used this package script to auto-
mate the production of binary packages for Linux and Mac.
Finally, we developed a custom Windows build environment
to build a distributable Windows binary.

Python 3 Support

PyNE was originally developed for the Python 2 in-
terpreter as it was and still is the most common version of
Python used in scientific computing. Python 3 is slowly
starting to replace it, however, as the default Python version.
With this changeover on the horizon the PyNE development
team made an effort in preparation for the v0.4 release to
make PyNE compatible with both versions. PyNE is now
built and tested on Python 3 on a regular basis.

CULTIVATION OF USERS AND DEVELOPERS

Computational toolkits in the sciences grow more ro-
bust by leveraging a broad user base who test core capa-
bilities with each use. Similarly, such toolkits grow more
powerful by a broad developer base that serves the commu-
nity by contributing new, research-relevant features. Devel-
opment of a sustainable user and developer community is
therefore integral to the success of the PyNE toolkit. To this
end, the development team has organized tutorials to reach
out to new users and has sought out support development
by graduate students.

A tutorial was organized in November at the University
of California, Berkeley to both reach out to new users and
to gather feedback on the user experience of PyNE. Over a
dozen researchers attended. The audience included under-
graduate and graduate students in nuclear engineering as
well as post-docs and faculty. In a six hour workshop, the
attendees installed PyNE and ran prepared examples with
the help of members of the development team. In addition
to demonstrating the core data manipulation capabilities of
the PyNE toolkit, the workshop included a reflective pe-
riod in which attendees had the opportunity to brainstorm
and suggest extensions, features, and improvements for the
toolkit that were of interest in the context of their particular
research.

Based on the success of this event and the organic
growth of our user base, a second user workshop was con-
ducted at the 18th Topical Meeting of the Radiation Protec-
tion and Shielding Division of ANS in September 2014. We
plan to hold more of these in the future.

The development team has also conducted development
sprints at both the University of California and the Univer-
sity of Wisconsin to cultivate the developer communities
that have arisen in those institutions. These sprints allow the
diverse and geographically dispersed development team to
gather and collaborate on code contributions in a coherent
manner.

In order to encourage young researchers to become in-
volved in scientific computing, a number of desired PyNE

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9-13, 2014



1168 Computational Tools for Radiation Protection and Shielding

extensions have been defined online. These short descrip-
tions of desired extensions can be found on the PyNE web-
site and are intended to guide the contributions of young
researchers. By defining relevant independent contributions
with realistic scope, these descriptions provide an opportu-
nity for a beginner developer to contribute code in a guided
manner and will assist their transition from user to devel-
oper.

CONCLUSIONS

In the past year the PyNE development team has
worked to improve PyNE’s usability in addition to adding
new features. The availability of binaries for stable releases
has made PyNE more accessible to those who are users but
not developers. The PyNE project will continue to create
free and open source tools that easily interface with the
plethora of choices available in nuclear engineering and
scientific computing.

LLNL-ABS-656040

REFERENCES

1. E. BIONDO, A. DAVIS, A. SCOPATZ, and P. P. H.
WILSON, “Rigorous Two-Step Activation for Fusion
Systems with PyNE,” in “Proc. of the 18th Topical
Meeting of the Radiation Protection & Shielding Divi-
sion of ANS,” Knoxville, TN (2014).

2. T.J. TAUTGES, P. P. H. WILSON, J. KRAFTCHECK,
B. F. SMITH, and D. L. HENDERSON, “Acceleration
Techniques for Direct Use of CAD-Based Geometries
in Monte Carlo Radiation Transport,” in “International
Conference on Mathematics, Computational Methods
& Reactor Physics (M&C 2009),” American Nuclear
Society, Saratoga Springs, NY (2009).

3. A. HAGHIGHAT and J. C. WAGNER, “Monte Carlo
Variance Reduction with Deterministic Importance
Functions,” Progress in Nuclear Energy, 42, 1, 25-53
(2003).

4. UW BATLAB TEAM, “BaTLab,” https://batlab.
org (2014).

5. T. J. TAUTGES, R. MEYERS, K. MERKLEY,
C. STIMPSON, and C. ERNST, “MOAB: A Mesh-
Oriented Database,” SAND2004-1592, Sandia National
Laboratories (Apr. 2004), report.

6. J. PORTER, “PyTAPS v1.4 documentation,” http://
pythonhosted.org/PyTAPS/ (2011).

7. M. J. TURK, B. D. SMITH, J. S. OISHI, S. SKORY,
S. W. SKILLMAN, T. ABEL, and M. L. NORMAN,
“yt: A Multi-code Analysis Toolkit for Astrophysical
Simulation Data,” Astrophysical Journal, Supplement,
192, 9 (Jan. 2011).

8. S. NYBERG, “Self Intersecting Mobius Chain,”
http://http://grabcad.com/library/
self-intersecting-mobius-chain-1, accessed:
2014-06-22.

9. P. P. H. WILSON, H. TSIGE-TAMIRAT, H. Y.
KHATER, and D. L. HENDERSON, “Validation of
the ALARA activation code,” Fusion Technology, 34,

10.

11.

12.

13.

784-788 (1998).

Y. CHEN and U. FISCHER, “Rigorous MCNP Based
Shutdown Dose Rate Calculations: Computational
Scheme, Verification Calculations and Application to
ITER,” Fusion Engineering and Design, 63-64, 107—
114 (2002).

T. M. EVANS, A. S. STAFFORD, R. N. SLAY-
BAUGH, and K. T. CLARNO, “Denovo: A New
Three-Dimensional Parallel Discrete Ordinates Code in
SCALE,” Nuclear Technology, 171, 171-200 (2010).
G. BATTISTONI, S. MURARO, P SALA,
F. CERUTTI, S. FERRARI, A. ROESLER, A. FASSO",
and J. RANFT, “The FLUKA code: Description and
benchmarking,” AIP Conference Proceeding, 896,
31-49 (2007).

R. W. CARLSEN, M. GIDDEN, K. HUFF, A. C.
OPOTOWSKY, O. RAKHIMOV, A. M. SCOPATZ,
Z. WELCH, and P. WILSON, “Cyclus v1.0.0,” (Jun.
2014).

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9-13, 2014





