
1165

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014 Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014

Computational Tools for Radiation Protection and Shielding

% of C/E ratios
σ Photon Adjoint Photon Neutron

1 66.6 70.1 69.2
2 90.4 95.4 96.7
3 96.2 99.2 100.0

TABLE I. The percentage of C/E ratios for the three verification problems that fall within 1σ, 2σ and 3σ of 1.0.

used. The source was a one MeV monoenergetic point
source. The quantity of interest in this test problem was the
current per lethargy on the outer surface of the sphere.

Verification Results and Discussion

In MCNP6 108 histories were completed since it was
to serve as the reference solution. In FACEMC only 106

histories were completed to keep the run time manageable.
Figure. 3 shows the current per lethargy computed us-

ing MCNP6 and FACEMC with hydrogen at 2500 Kelvin.
The C/E ratio is also shown in this figure. The agreement be-
tween FACEMC and MCNP6 for hydrogen at 2500 Kelvin
is clear from this figure.

0.05

0.10

0.15

0.20

0.25

C
ur

re
nt

 P
er

 L
et

ha
rg

y

MCNP6
FACEMC

0.90

0.95

1.00

1.05

1.10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

C
/E

Energy (MeV)

Fig. 3. Current per lethargy on 1 cm sphere surface for
hydrogen at 2500 Kelvin. The agreement between FACEMC
and MCNP6 is also shown.

The percentage of C/E ratios that lie within 1σ, 2σ and
3σ of 1.0 have also been calculated for this test case and are
shown in Table I. Based on table I the C/E ratios appear to
be very nearly normally distributed about 1.0 indicating that
the results are in very close agreement.

While much more verification work must be done, this
simple study is promising and indicates that the free gas ther-
mal scattering model has likely been implemented correctly
in FACEMC.

CONCLUSION AND FUTURE WORK

FRENSIE, a new framework geared specifically to-
wards Monte Carlo methods research has been introduced
and described. The framework has adopted a specific high-

level design strategy to provide extensibility, which is a
necessary feature of any research tool. Using the FRENSIE
framework, a new Monte Carlo code called FACEMC has
also been created. This new code is still under development
but has reached the point where some basic verification
work is being done to test the particle interaction models
that have been implemented. The preliminary results of
this verification work, which have also been presented, are
promising and indicate that the models have likely been
implemented correctly. Much more verification work must
be done before this can be said with confidence though.

As stated previously, continuous-energy adjoint trans-
port capabilities for photons and neutrons are of interest to
the FACEMC developers and are currently under develop-
ment. As the adjoint interaction models are implemented,
more verification results will be shared. In addition, as the
transmutation package in FRENSIE matures, the depletion
and activation capabilities that it provides will be added to
FACEMC.

ACKNOWLEDGMENTS

This work has largely been performed under appoint-
ment to the Nuclear Regulatory Commission Fellowship
program at the University of Wisconsin-Madison depart-
ment of Engineering Physics.

Many thanks must also be given to a number of Los
Alamos National Laboratory employees whose discussions
have helped in the development of FRENSIE and FACEMC.

Dr. Jürgen Henniger, Dorothea Sommer and Uwe Re-
ichelt at the Technische Universität Dresden must also be
thanked for their generous help with adjoint photon meth-
ods.

REFERENCES

1. P. WILSON et al., “Acceleration Techniques for the Di-
rect Use of CAD-Based Geometry in Fusion Neutronics
Analysis,” Fusion Engineering and Design, 85, 10-12,
1759–1765 (Dec. 2010).

2. M. HEROUX et al., “An Overview of Trilinos,” Tech.
Rep. SAND2003-2927, Sandia National Laboratories
(2003).

3. J. T. GOORLEY et al., “MCNP6 User’s Manual: Version
1.0,” Technical Report LA-CP-13-00634, Los Alamos
National Laboratory (2013).

4. D. E. CULLEN et al., “EPDL97 The Evaluated Data
Library, ’97 Version,” Tech. Rep. UCRL-ID-50400, Uni-
versity of California, Lawrence Livermore National Lab-
oratory (Sep. 1997).

PyNE Progress Report

Cameron R. Bates1,2, Elliott Biondo3, Kathryn Huff2, Kalin Kiesling3, Anthony Scopatz3

Robert Carlsen3, Andrew Davis3, Matthew Gidden3, Tim Haines3, Joshua Howland2, Blake Huff2, Kevin Manalo4, Arielle
Opotowsky3, Rachel Slaybaugh2, Eric Relson3, Paul Romano5, Patrick Shriwise3, John D. Xia6, Paul Wilson3, and Julie

Zachman3

1 Lawrence Livermore National Laboratory, 7000 East Ave L-188, Livermore, CA 94550
2 The University of California, Berkeley, 2521 Hearst Ave, Berkeley, CA 94709

3 The University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706
4 Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332

5 Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
6 University of Chicago, 5747 S. Ellis Ave., Jones 311, Chicago, IL 60637

bates26@llnl.gov

INTRODUCTION

PyNE is a suite of free and open source (BSD licensed)
tools to aid in computational nuclear science and engineer-
ing. PyNE seeks to provide native implementations of com-
mon nuclear algorithms, as well as an interface for the script-
ing language Python and I/O support for industry standard
nuclear codes and data formats. In the past year PyNE
has added many features including a Rigorous 2-step Ac-
tivation workflow (R2S) [1], Direct Accelerated Geometry
Monte Carlo (DAGMC) ray tracing [2], Consistent Adjoint-
Weighted Importance Sampling (CADIS) variance reduction
[3], and expanded ENSDF parsing support. As a part of our
ongoing efforts to implement a verification and validation
framework we also added continuous integration using the
Build and Test Lab [4] at the University of Wisconsin. The
PyNE development team has also improved PyNE’s ease of
use by making binaries available for Windows, Mac, and
Linux through the conda package manager as well as adding
Python 3 support.

FEATURE ENHANCEMENTS

Mesh

As of v0.4, PyNE includes a mesh representation in-
terface that is used to build up geometries, store materials,
and solve spatial differential equations. This is implemented
as a layer on top of MOAB meshes [5]. In addition to the
PyTAPS interface [6], a Python interface to interact with
MOAB mesh objects, it also adds PyNE Material objects,
which allow the user to define a mix of multiple isotopes,
to volume elements as well as a generic tagging interface.
These features together form a generic, easy-to-use mesh
library that is capable of handling a plethora of nuclear
engineering problems.

The Mesh class lives in the pyne.mesh module. This
class houses an iMesh instance called mesh which comes
from PyTAPS and contains methods for native mesh op-
erations. The mats attribute is an instance of a PyNE
MaterialLibrary. This is a mapping of volume element
handles to Material objects. Tags—sometimes known as
fields—are accessible as attributes on the mesh object itself.
There are several different types of tags (IMesh, Material,

Fig. 1. A 2-D slice of a 3-D PyNE flux mesh of ITER plotted
in yt. This model is for demonstration purposes only.

Metadata, Computed) depending on where the data should
be stored. All tag types expose the same interface.

To do volumetric analysis and visualization, the Mesh
class is natively supported by the yt project [7]. An example
of the use of this mesh to analyze neutron flux in ITER is
shown in Fig. 1.

DAGMC Module

Direct Accelerated Geometry Monte Carlo is a compo-
nent of MOAB that facilitates Monte Carlo ray tracing on
CAD geometries [2]. A dagmc module has been added to
PyNE, providing a Python interface to these ray tracing capa-



1166

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014 Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014

Computational Tools for Radiation Protection and Shielding

(a) CAD model of a complex geometry [8].

(b) Volume fractions of the geometry within the mesh volume ele-
ments of an overlaid 200 x 100 x 200 Cartesian mesh.

Fig. 2. A CAD geometry and a discretized representation
created using PyNE discretize_geom(). This model is
for demonstration purposes only.

bilities. The dagmc.discretize_geom() function accom-
plishes the common task of mapping geometry cells onto a
Cartesian or tetrahedral mesh. The cell_fracs_to_mats
method of the Mesh class can be used to seamlessly create
PyNE Mesh objects tagged with materials, where the ma-
terials are mixtures of the contributions from the various
geometry cells found in each mesh volume element. This es-
pecially useful for discretizing CAD geometries onto grids
for deterministic methods. An example of this is shown in
Fig. 2.

ALARA Module

ALARA is a nuclear inventory analysis code developed
at University of Wisconsin - Madison [9]. A module has
been added to PyNE to facilitate the generation of ALARA
input and the parsing of ALARA output. PyNE Mesh objects
tagged with flux and material data can be used to generate
input. The compositions of activated materials as calculated
by ALARA can also be read back into a PyNE Mesh object.
These components can be used in mesh-based activation and
burn-up workflows.

R2S Activation Workflow

The Rigorous Two-Step (R2S) method is used to es-
timate the shutdown dose rate (SDDR) in fusion systems
from photons born from neutron activation products [10].
This method involves separate neutron and photon transport
simulations, coupled to a dedicated nuclear inventory analy-

sis code. The PyNE R2S module implements a mesh-based
R2S method and accomplishes this coupling in-memory by
leveraging the PyNE mesh, material, dagmc, mcnp, and
alara modules. The R2S module currently only supports
transport with MCNP and nuclear inventory analysis with
ALARA, but support for additional physics codes is planned.
Mesh-based photon source sampling is accomplished within
MCNP by compiling MCNP against a custom source sam-
pling library within PyNE.

CADIS Variance Reduction

The Consistent Adjoint-Weighted Importance Sam-
pling and the Forward-Weighted CADIS (FW-CADIS)
method are hybrid Monte Carlo variance reduction tech-
niques that use deterministic estimates of the forward and
adjoint flux to generate Monte Carlo weight windows
and source biasing parameters [3]. A mesh-based imple-
mentation of this method has been added to the PyNE
variancereduction module. Work is currently underway
to interface with the Denovo [11] deterministic transport
code to in order to acquire these deterministic fluxes.

Tally Class

One common requirement in processing the output of
MCNP and other nuclear engineering codes is to keep track
of multiple tallies. PyNE has added a C++ class with a
Python interface that assists users in keeping track of tally
data. The PyNE development team is working to add saving,
loading, and manipulation of these tally objects in the future.

Fluka Module

The fluka module is designed to parse the output files
from FLUKA, a fully integrated particle physics Monte
Carlo simulation package[12]. Currently, this module only
supports the parsing of USRBIN output files, which is a file
similar to a meshtal file in MCNP in that it tracks a certain
quantity over an evenly spaced volume mesh. This module
parses the USRBIN files and saves the tracked data and
percent error data as attributes of a Mesh object.

Amalgamation

While PyNE is ostensibly a Python-oriented toolkit
over two-thirds of the code base is written in C++. This
makes it possible to use many of the features of PyNE
without needing Python. In order to simplify the use of
PyNE’s C++ API we have added the ability to amalgamate
all of the C++ code into a single source and header file.
This makes it possible to add these two files to any project
in order to use much of the functionality in PyNE without
having to worry about linking multiple libraries in a separate
location. This is used in Cyclus [13] to use PyNE features
without adding Python as a dependency.

ENSDF Improvements

Previous versions of PyNE have included some ENSDF
parsing capabilities. These have been focused on extracting
half-lives and branching ratios of metastable and ground
states. This has been vastly expanded to support the parsing
of most ENSDF record types and to make level structure
and decay data available in PyNE’s C++/Python nuclear
data interface. This makes it possible to use PyNE to look
up most structure and decay data similar to online tools such
as NuDat http://www.nndc.bnl.gov/nudat2/.

We have broken down the data from ENSDF into six
distinct subsets. These include: excited level data, decay
normalization data, gamma-ray data, alpha decay data, β−
decay, and electron capture/β+ decay. In addition to infor-
mation about the radiations for all decay transitions listed
in ENSDF we have also included atomic data from the Na-
tional Nuclear Data Center to calculate X-ray emissions
from conversion electrons in gamma-ray emission and elec-
tron capture decay. Work is underway to add decay data
access to the PyNE Material object to facilitate generation
of complex sources for use in Monte Carlo transport codes.

Fission Yield Data

The latest release of PyNE includes two different sets
of fission yield data. The first is the IAEA WIMSD library
which provides fission product yields based on ENDF/B-VI.
The second is from the IAEA Safeguards data library and
includes independent fission yields with thermal, fast, and
14-MeV neutrons for 232Th, 233U, 235U, 239Pu, and 241Pu.

VERIFICATION AND VALIDATION

The PyNE development team is working to implement
documented verification and validation as a part of our basic
development process. This has included: ensuring all code
changes to PyNE have at least one reviewer who was not an
author, requiring unit tests for all code additions, a coding
style guide, and requiring all tests to pass on continuous inte-
gration builds before merging code changes. This issue will
be addressed in more detail in other concurrent publications.

USABILITY ENHANCEMENTS

Installation Improvements and Binary Distributions

At our first PyNE workshop a significant amount of
the instructional time was devoted to PyNE installation
and configuration. This reduced the amount of material
we were able to cover significantly. From this experi-
ence the PyNE development team came to the conclusion
that a major focus of our version 0.4 development efforts
should be on making the installation process simpler for
non-developers. The core of this effort is based around the
conda package manager. Conda is an open source package
manager that is capable of managing packages on Win-
dows, Mac and Linux. This makes it possible to use a
single package manager across all platforms. We devel-
oped a standard conda package script which can be found

at https://github.com/conda/conda-recipes. This
automates the installation of dependencies for PyNE, signif-
icantly reducing the difficulty of building and installing the
software. In addition, we used this package script to auto-
mate the production of binary packages for Linux and Mac.
Finally, we developed a custom Windows build environment
to build a distributable Windows binary.

Python 3 Support

PyNE was originally developed for the Python 2 in-
terpreter as it was and still is the most common version of
Python used in scientific computing. Python 3 is slowly
starting to replace it, however, as the default Python version.
With this changeover on the horizon the PyNE development
team made an effort in preparation for the v0.4 release to
make PyNE compatible with both versions. PyNE is now
built and tested on Python 3 on a regular basis.

CULTIVATION OF USERS AND DEVELOPERS

Computational toolkits in the sciences grow more ro-
bust by leveraging a broad user base who test core capa-
bilities with each use. Similarly, such toolkits grow more
powerful by a broad developer base that serves the commu-
nity by contributing new, research-relevant features. Devel-
opment of a sustainable user and developer community is
therefore integral to the success of the PyNE toolkit. To this
end, the development team has organized tutorials to reach
out to new users and has sought out support development
by graduate students.

A tutorial was organized in November at the University
of California, Berkeley to both reach out to new users and
to gather feedback on the user experience of PyNE. Over a
dozen researchers attended. The audience included under-
graduate and graduate students in nuclear engineering as
well as post-docs and faculty. In a six hour workshop, the
attendees installed PyNE and ran prepared examples with
the help of members of the development team. In addition
to demonstrating the core data manipulation capabilities of
the PyNE toolkit, the workshop included a reflective pe-
riod in which attendees had the opportunity to brainstorm
and suggest extensions, features, and improvements for the
toolkit that were of interest in the context of their particular
research.

Based on the success of this event and the organic
growth of our user base, a second user workshop was con-
ducted at the 18th Topical Meeting of the Radiation Protec-
tion and Shielding Division of ANS in September 2014. We
plan to hold more of these in the future.

The development team has also conducted development
sprints at both the University of California and the Univer-
sity of Wisconsin to cultivate the developer communities
that have arisen in those institutions. These sprints allow the
diverse and geographically dispersed development team to
gather and collaborate on code contributions in a coherent
manner.

In order to encourage young researchers to become in-
volved in scientific computing, a number of desired PyNE



1167

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014 Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014

Computational Tools for Radiation Protection and Shielding

(a) CAD model of a complex geometry [8].

(b) Volume fractions of the geometry within the mesh volume ele-
ments of an overlaid 200 x 100 x 200 Cartesian mesh.

Fig. 2. A CAD geometry and a discretized representation
created using PyNE discretize_geom(). This model is
for demonstration purposes only.

bilities. The dagmc.discretize_geom() function accom-
plishes the common task of mapping geometry cells onto a
Cartesian or tetrahedral mesh. The cell_fracs_to_mats
method of the Mesh class can be used to seamlessly create
PyNE Mesh objects tagged with materials, where the ma-
terials are mixtures of the contributions from the various
geometry cells found in each mesh volume element. This es-
pecially useful for discretizing CAD geometries onto grids
for deterministic methods. An example of this is shown in
Fig. 2.

ALARA Module

ALARA is a nuclear inventory analysis code developed
at University of Wisconsin - Madison [9]. A module has
been added to PyNE to facilitate the generation of ALARA
input and the parsing of ALARA output. PyNE Mesh objects
tagged with flux and material data can be used to generate
input. The compositions of activated materials as calculated
by ALARA can also be read back into a PyNE Mesh object.
These components can be used in mesh-based activation and
burn-up workflows.

R2S Activation Workflow

The Rigorous Two-Step (R2S) method is used to es-
timate the shutdown dose rate (SDDR) in fusion systems
from photons born from neutron activation products [10].
This method involves separate neutron and photon transport
simulations, coupled to a dedicated nuclear inventory analy-

sis code. The PyNE R2S module implements a mesh-based
R2S method and accomplishes this coupling in-memory by
leveraging the PyNE mesh, material, dagmc, mcnp, and
alara modules. The R2S module currently only supports
transport with MCNP and nuclear inventory analysis with
ALARA, but support for additional physics codes is planned.
Mesh-based photon source sampling is accomplished within
MCNP by compiling MCNP against a custom source sam-
pling library within PyNE.

CADIS Variance Reduction

The Consistent Adjoint-Weighted Importance Sam-
pling and the Forward-Weighted CADIS (FW-CADIS)
method are hybrid Monte Carlo variance reduction tech-
niques that use deterministic estimates of the forward and
adjoint flux to generate Monte Carlo weight windows
and source biasing parameters [3]. A mesh-based imple-
mentation of this method has been added to the PyNE
variancereduction module. Work is currently underway
to interface with the Denovo [11] deterministic transport
code to in order to acquire these deterministic fluxes.

Tally Class

One common requirement in processing the output of
MCNP and other nuclear engineering codes is to keep track
of multiple tallies. PyNE has added a C++ class with a
Python interface that assists users in keeping track of tally
data. The PyNE development team is working to add saving,
loading, and manipulation of these tally objects in the future.

Fluka Module

The fluka module is designed to parse the output files
from FLUKA, a fully integrated particle physics Monte
Carlo simulation package[12]. Currently, this module only
supports the parsing of USRBIN output files, which is a file
similar to a meshtal file in MCNP in that it tracks a certain
quantity over an evenly spaced volume mesh. This module
parses the USRBIN files and saves the tracked data and
percent error data as attributes of a Mesh object.

Amalgamation

While PyNE is ostensibly a Python-oriented toolkit
over two-thirds of the code base is written in C++. This
makes it possible to use many of the features of PyNE
without needing Python. In order to simplify the use of
PyNE’s C++ API we have added the ability to amalgamate
all of the C++ code into a single source and header file.
This makes it possible to add these two files to any project
in order to use much of the functionality in PyNE without
having to worry about linking multiple libraries in a separate
location. This is used in Cyclus [13] to use PyNE features
without adding Python as a dependency.

ENSDF Improvements

Previous versions of PyNE have included some ENSDF
parsing capabilities. These have been focused on extracting
half-lives and branching ratios of metastable and ground
states. This has been vastly expanded to support the parsing
of most ENSDF record types and to make level structure
and decay data available in PyNE’s C++/Python nuclear
data interface. This makes it possible to use PyNE to look
up most structure and decay data similar to online tools such
as NuDat http://www.nndc.bnl.gov/nudat2/.

We have broken down the data from ENSDF into six
distinct subsets. These include: excited level data, decay
normalization data, gamma-ray data, alpha decay data, β−
decay, and electron capture/β+ decay. In addition to infor-
mation about the radiations for all decay transitions listed
in ENSDF we have also included atomic data from the Na-
tional Nuclear Data Center to calculate X-ray emissions
from conversion electrons in gamma-ray emission and elec-
tron capture decay. Work is underway to add decay data
access to the PyNE Material object to facilitate generation
of complex sources for use in Monte Carlo transport codes.

Fission Yield Data

The latest release of PyNE includes two different sets
of fission yield data. The first is the IAEA WIMSD library
which provides fission product yields based on ENDF/B-VI.
The second is from the IAEA Safeguards data library and
includes independent fission yields with thermal, fast, and
14-MeV neutrons for 232Th, 233U, 235U, 239Pu, and 241Pu.

VERIFICATION AND VALIDATION

The PyNE development team is working to implement
documented verification and validation as a part of our basic
development process. This has included: ensuring all code
changes to PyNE have at least one reviewer who was not an
author, requiring unit tests for all code additions, a coding
style guide, and requiring all tests to pass on continuous inte-
gration builds before merging code changes. This issue will
be addressed in more detail in other concurrent publications.

USABILITY ENHANCEMENTS

Installation Improvements and Binary Distributions

At our first PyNE workshop a significant amount of
the instructional time was devoted to PyNE installation
and configuration. This reduced the amount of material
we were able to cover significantly. From this experi-
ence the PyNE development team came to the conclusion
that a major focus of our version 0.4 development efforts
should be on making the installation process simpler for
non-developers. The core of this effort is based around the
conda package manager. Conda is an open source package
manager that is capable of managing packages on Win-
dows, Mac and Linux. This makes it possible to use a
single package manager across all platforms. We devel-
oped a standard conda package script which can be found

at https://github.com/conda/conda-recipes. This
automates the installation of dependencies for PyNE, signif-
icantly reducing the difficulty of building and installing the
software. In addition, we used this package script to auto-
mate the production of binary packages for Linux and Mac.
Finally, we developed a custom Windows build environment
to build a distributable Windows binary.

Python 3 Support

PyNE was originally developed for the Python 2 in-
terpreter as it was and still is the most common version of
Python used in scientific computing. Python 3 is slowly
starting to replace it, however, as the default Python version.
With this changeover on the horizon the PyNE development
team made an effort in preparation for the v0.4 release to
make PyNE compatible with both versions. PyNE is now
built and tested on Python 3 on a regular basis.

CULTIVATION OF USERS AND DEVELOPERS

Computational toolkits in the sciences grow more ro-
bust by leveraging a broad user base who test core capa-
bilities with each use. Similarly, such toolkits grow more
powerful by a broad developer base that serves the commu-
nity by contributing new, research-relevant features. Devel-
opment of a sustainable user and developer community is
therefore integral to the success of the PyNE toolkit. To this
end, the development team has organized tutorials to reach
out to new users and has sought out support development
by graduate students.

A tutorial was organized in November at the University
of California, Berkeley to both reach out to new users and
to gather feedback on the user experience of PyNE. Over a
dozen researchers attended. The audience included under-
graduate and graduate students in nuclear engineering as
well as post-docs and faculty. In a six hour workshop, the
attendees installed PyNE and ran prepared examples with
the help of members of the development team. In addition
to demonstrating the core data manipulation capabilities of
the PyNE toolkit, the workshop included a reflective pe-
riod in which attendees had the opportunity to brainstorm
and suggest extensions, features, and improvements for the
toolkit that were of interest in the context of their particular
research.

Based on the success of this event and the organic
growth of our user base, a second user workshop was con-
ducted at the 18th Topical Meeting of the Radiation Protec-
tion and Shielding Division of ANS in September 2014. We
plan to hold more of these in the future.

The development team has also conducted development
sprints at both the University of California and the Univer-
sity of Wisconsin to cultivate the developer communities
that have arisen in those institutions. These sprints allow the
diverse and geographically dispersed development team to
gather and collaborate on code contributions in a coherent
manner.

In order to encourage young researchers to become in-
volved in scientific computing, a number of desired PyNE



1168

Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014 Transactions of the American Nuclear Society, Vol. 111, Anaheim, California, November 9–13, 2014

Computational Tools for Radiation Protection and Shielding

extensions have been defined online. These short descrip-
tions of desired extensions can be found on the PyNE web-
site and are intended to guide the contributions of young
researchers. By defining relevant independent contributions
with realistic scope, these descriptions provide an opportu-
nity for a beginner developer to contribute code in a guided
manner and will assist their transition from user to devel-
oper.

CONCLUSIONS

In the past year the PyNE development team has
worked to improve PyNE’s usability in addition to adding
new features. The availability of binaries for stable releases
has made PyNE more accessible to those who are users but
not developers. The PyNE project will continue to create
free and open source tools that easily interface with the
plethora of choices available in nuclear engineering and
scientific computing.

LLNL-ABS-656040

REFERENCES

1. E. BIONDO, A. DAVIS, A. SCOPATZ, and P. P. H.
WILSON, “Rigorous Two-Step Activation for Fusion
Systems with PyNE,” in “Proc. of the 18th Topical
Meeting of the Radiation Protection & Shielding Divi-
sion of ANS,” Knoxville, TN (2014).

2. T. J. TAUTGES, P. P. H. WILSON, J. KRAFTCHECK,
B. F. SMITH, and D. L. HENDERSON, “Acceleration
Techniques for Direct Use of CAD-Based Geometries
in Monte Carlo Radiation Transport,” in “International
Conference on Mathematics, Computational Methods
& Reactor Physics (M&C 2009),” American Nuclear
Society, Saratoga Springs, NY (2009).

3. A. HAGHIGHAT and J. C. WAGNER, “Monte Carlo
Variance Reduction with Deterministic Importance
Functions,” Progress in Nuclear Energy, 42, 1, 25–53
(2003).

4. UW BATLAB TEAM, “BaTLab,” https://batlab.
org (2014).

5. T. J. TAUTGES, R. MEYERS, K. MERKLEY,
C. STIMPSON, and C. ERNST, “MOAB: A Mesh-
Oriented Database,” SAND2004-1592, Sandia National
Laboratories (Apr. 2004), report.

6. J. PORTER, “PyTAPS v1.4 documentation,” http://
pythonhosted.org/PyTAPS/ (2011).

7. M. J. TURK, B. D. SMITH, J. S. OISHI, S. SKORY,
S. W. SKILLMAN, T. ABEL, and M. L. NORMAN,
“yt: A Multi-code Analysis Toolkit for Astrophysical
Simulation Data,” Astrophysical Journal, Supplement,
192, 9 (Jan. 2011).

8. S. NYBERG, “Self Intersecting Möbius Chain,”
http://http://grabcad.com/library/
self-intersecting-mobius-chain-1, accessed:
2014-06-22.

9. P. P. H. WILSON, H. TSIGE-TAMIRAT, H. Y.
KHATER, and D. L. HENDERSON, “Validation of
the ALARA activation code,” Fusion Technology, 34,

784–788 (1998).
10. Y. CHEN and U. FISCHER, “Rigorous MCNP Based

Shutdown Dose Rate Calculations: Computational
Scheme, Verification Calculations and Application to
ITER,” Fusion Engineering and Design, 63-64, 107–
114 (2002).

11. T. M. EVANS, A. S. STAFFORD, R. N. SLAY-
BAUGH, and K. T. CLARNO, “Denovo: A New
Three-Dimensional Parallel Discrete Ordinates Code in
SCALE,” Nuclear Technology, 171, 171–200 (2010).

12. G. BATTISTONI, S. MURARO, P. SALA,
F. CERUTTI, S. FERRARI, A. ROESLER, A. FASSO‘,
and J. RANFT, “The FLUKA code: Description and
benchmarking,” AIP Conference Proceeding, 896,
31–49 (2007).

13. R. W. CARLSEN, M. GIDDEN, K. HUFF, A. C.
OPOTOWSKY, O. RAKHIMOV, A. M. SCOPATZ,
Z. WELCH, and P. WILSON, “Cyclus v1.0.0,” (Jun.
2014).

Quality Assurance within the PyNE Open Source Toolkit

Elliott Biondo1, Anthony Scopatz1, Matthew Gidden1, Rachel Slaybaugh2, Cameron Bates2, Paul P.H. Wilson1

1 The University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706
2 The University of California, Berkeley, 2521 Hearst Ave, Berkeley, CA 94709

Email: biondo@wisc.edu

INTRODUCTION

In order for PyNE [1] to be broadly adopted by the

nuclear science and engineering community, it must con-

form to rigorous software development standards. In this

work we discuss how the philosophy and implementa-

tion of PyNE’s development practices are consistent with

the American Society of Mechanical Engineers (ASME)

NQA-1 standards [2][3], and what actions will need to be

taken for full compliance.

PyNE is a trans-institutional, open source project con-

sisting of a collection of computational tools pertinent to

nuclear engineering analysis and simulations. The capa-

bilities of PyNE include canonical nuclide and reaction

naming conventions, material handling, nuclear data and

cross-section reading, mesh operations, and physics-code-

specific capabilities. Users can use PyNE code as a com-

ponent within their own software to simplify complex tasks

such as radiation shielding calculations [4].

PyNE is cognizant of exacting regulations that apply

to much of the potential user base. Many applications re-

quire software that meets the quality assurance (QA) crite-

ria set forth by the U.S. Nuclear Regulatory Commission

(NRC). The NRC endorses the ASME NQA-1-2008 reg-

ulatory standard Quality Assurance Requirements for Nu-

clear Facility Applications (Parts I and II) [5] with the

NQA-1a-2009 addendum [3] for the design and construc-

tion of nuclear power plants and fuel reprocessing facilities

[5].

These documents allude to the traditional software de-

velopment workflow known as the waterfall model [6].

This strategy features several stages: specification (or

requirements), design, implementation, verification, and

maintenance. Each stage must be completed and reviewed

before continuing on to the next stage. The waterfall model

has been shown to be very effective for large, technical

projects. However, with the advent of distributed ver-

sion control as well as physically- and organizationally-

disparate development teams came the rise in popularity of

agile development [7]. The overarching principle of the ag-

ile strategy is to have a short iteration cycle so that the soft-

ware may evolve and respond quickly to changing needs

and use cases.

In practice, the agile method is a series of parallel wa-

terfalls for every issue or requirement that arises. All code

must be designed, written, reviewed, tested, and verified.

This process happens for all subsets of the code base indi-

vidually. This stands opposed to the waterfall model where

the review process happens over the entire code base as an

aggregate entity.

Agile methods are useful for teams that are small, phys-

ically separate, at different institutions, or unfunded. This

is because the overhead is much less than required for wa-

terfall strategies. Agile mechanisms allow for developers

to focus on what is interesting or useful to them on an as-

needed basis. Toolkits or library projects (rather than sim-

ulators or user interfaces) are particularly ripe for agile de-

velopment. A well-designed toolkit should be modular in

nature, which allows for parallel streams of development.

PyNE follows an agile development strategy as much out

of necessity as out of ideological fit. Regardless of the de-

velopment strategy, nuclear code must adhere to the highest

standards of quality.

Organizations seeking to comply with NQA-1-

2008/NQA-1a-2009 can use any portion of PyNE (or code

from any source for that matter) as a component of their de-

sign and/or operations software by complying with Part II

Subpart 2.7 Section 302, “Otherwise Acquired Software.”

This section provides provisions for the use of “freeware”

that “has not been previously approved under a program

consistent with [the NQA-1 standard]” [3]. To facilitate its

use, PyNE seeks to develop code that is fully compliant

with these standards, freeing users of any verification and

validation burden.

This paper presents the strategy implemented by PyNE

to ensure that open source, community-developed code is

written, reviewed, tested, and documented in a manner

compliant with regulatory standards. The requirements

of ASME-1-2008/ASME-1a-2009 are addressed explicitly.

The process for declaring PyNE code fully compliant is dis-

cussed. These efforts make the PyNE code base suitable for

a larger subset of the nuclear engineering community.

PYNE SOFTWARE DEVELOPMENT PRACTICES

The PyNE software development workflow is meticu-

lous, systematic, and similar to workflows of prominent

and well-established projects such as the Linux kernel.

The PyNE workflow is centered around the Git [8] dis-

tributed version control software and additional features

provided by the GitHub repository hosting service. The

develop and master branches of this repository repre-

sent a software baseline: a collection of software that has

gone through the review and approval process and cannot




