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The theory of non-ideal gases at thermodynamic equilibrium, for instance the van der Waals gas model, has played a central role in our
understanding of coexisting phases, as well as the transitions between them. In contrast, the theory fails with granular matter because
collisions between the grains dissipate energy, and their macroscopic size renders thermal fluctuations negligible. When a mass of
grains is subjected to mechanical vibration, it can make a transition to a fluid state. In this state, granular matter exhibits patterns and
instabilities that resemble those of molecular fluids. Here, we report a granular solid–liquid phase transition in a vibrating granular
monolayer. Unexpectedly, the transition is mediated by waves and is triggered by a negative compressibility, as for van der Waals
phase coexistence, although the system does not satisfy the hypotheses used to understand atomic systems. The dynamic behaviour
that we observe—coalescence, coagulation and wave propagation—is common to a wide class of phase transitions. We have combined
experimental, numerical and theoretical studies to build a theoretical framework for this transition.

In the course of recent decades, much effort has been devoted
to study the phases exhibited by granular matter. However, the
richness and complexity of the static and dynamic behaviour of
granular materials still present a major challenge in physics1,2.
Fluidized granular matter exhibits a variety of phenomena that
resemble those of molecular fluids: patterns and instabilities, such
as Faraday instability3,4 and Rayleigh–Benard-type convection5.
Depending on the forcing parameters, vertically vibrated granular
layers present different patterns such as stripes, squares, hexagons,
spirals, interfaces and oscillons6–8. In fact, it has been shown that
these subharmonic standing-wave patterns appear when the system
has undergone a solid-to-liquid-like transition9.

Recently, several granular systems that undergo interesting
phase transitions have been reported10–17. Two of these systems
are relevant to the present work. The first one is an experimental
and molecular dynamic simulation study of quasi-two-dimensional
(2D) systems consisting of submonolayers of grains subjected to
vertical vibration. This system shows a liquid–solid-like phase
transition, with a coexistence regime characterized by a dense
cluster of closely packed, almost immobile grains (crystal structure)
surrounded by a fluid of agitated particles14,15. Here, it is argued
that the phase behaviour can be understood through entropy
maximization in analogy to equilibrium hard-sphere systems18.
However, dramatic non-equilibrium effects are present, including
a significant difference in the granular temperatures of the two
phases. We underline that this type of behaviour—far from
equilibrium—can be expected if the phase transition is led by a
non-equilibrium potential19.

The second system is a fluidized granular layer in two spatial
dimensions, which exhibits a gas–liquid-like phase separation16,17,
analogous to the spinodal decomposition of the gas–liquid

transition in the van der Waals model20. At the onset of this phase
transition, the system reveals rich dynamic behaviour characterized
by the appearance, coalescence and disappearance of clusters. The
mechanism of this phase separation is triggered by a negative
compressibility, implied by the fact that the pressure is a decreasing
function of density.

The granular systems described above—microscopically well
modelled by either inelastic hard- or soft-sphere approximations
with no cohesive force and the associated simulations—are
known to show clustering, namely, coexistence of higher- and
lower-density regions. However, understanding the existence of
different granular phases requires a macroscopic viewpoint. A
continuous or macroscopic description of granular flows, a
‘granular hydrodynamics’, remains an open question. Here, none
of this is necessary because the use of order parameter equations
based on symmetry arguments is powerful enough to study the
dynamics of coexistence of different phases in out-of-equilibrium
granular matter2,21.

Here, we report a combined experimental, numerical and
theoretical study of a liquid–solid-like phase transition that takes
place in a vertically vibrated fluidized dense granular system
of N hard spheres confined on a horizontal plate with a top
lid at height h, which is less than two particle diameters. Two
experimental set-ups are considered. The first one is a long, narrow
channel, with a width of the order of a few particle diameters;
hence, the dynamics is quasi-1D (Fig. 1). We have considered this
configuration to characterize the dynamic behaviour of the phase
transition, avoiding 2D effects, such as curvature between phases
or crystal orientation interaction dependence. The second set-up
is used to measure the pressure as a function of particle density
to clarify the physical mechanism behind this phase transition. In
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Figure 1 Schematic representation of the system. a,b, Side (a) and top (b) views
of the system. In both experiments and molecular dynamic simulations, the cell
geometry is: height h= 1.8d, where d is the particle diameter, length Lx and width
Ly , with Lx � d and Ly ∼

> d. For the experimental pressure measurements, the
geometry is h= 1.7d and Lx ∼ Ly .

molecular dynamics, we have studied both 3D systems of hard
spheres and 2D systems of hard discs with gravity. Collisions are
inelastic, and both static and dynamic friction coefficients are
considered, as well as normal and tangential restitution coefficients.
For the 3D systems, these parameters are chosen close to the
experimental ones. Energy is injected by vibrating the cell as
in the experiment. We underline that these simulational studies
are complementary to experiments. Hence, molecular dynamics
enables us to explore and characterize more quantitatively the
phenomena involved in the solid–liquid transition. For example,
with molecular dynamics we can examine the frictionless limit,
where we observe the same type of phenomena, as well as the
neighbourhood of the critical point which is a much more difficult
task from an experimental point of view.

EXPERIMENTAL AND SIMULATED RESULTS

At the transition, one or more clusters appear. These clusters then
undergo a coarsening process, and eventually only one single solid
cluster prevails (Fig. 2). For fixed parameters, crystals with two
symmetries are observed, square or triangular based, surrounded
by a fluid phase as in the experimental observation in Fig. 2a,b.
Similar configurations are observed in 3D molecular dynamics.

Note that triangular crystals are observed in spite of h = 1.8d
being slightly lower than the height of a tetrahedron formed by
four spheres of diameter d in contact. This could seem unexpected,
as well as the coexistence between them (Fig. 2b). However, in
molecular dynamics, both symmetries coexisting with a fluid state
have been observed at high densities, in a small region of the (ρo,h)
space15, where ρo = N/Nm and Nm is the maximum number of
particles in a closed-packed monolayer. We have also observed (in
experiments and molecular dynamics) the intermittence between
different symmetries at fixed forcing and geometrical parameters,
showing that these phases are in fact metastable. In addition, more
exotic states are sometimes observed, such as crystals of alternating
layers of triangular and square symmetry for different widths Ly .
These states remain quite stable against perturbations. We then
conclude that the geometrical constraint Ly ∼

> d has a strong effect
on the observed solid symmetries, and thus plays a similar role as h
in the quasi-2D system15.

3D molecular dynamic simulations in a quasi-1D configuration
show the transition from a homogeneous fluid phase to the
coexistence of a solid crystal and a lower density fluid phase
(Fig. 2c). The observed phenomena present all the basic features
observed experimentally: solid–fluid coexistence, different crystal
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Figure 2 Solid–liquid coexistence in the confined system. a,b, Averaged images
of typical crystal structures observed: vibration frequency f= 65 Hz, vibration
amplitude A = 0.29d and Ly = 4.65±0.05mm. Different symmetries are
observed: a, square and b, the coalescence of two triangular solid clusters
competing with a square-symmetry cluster. c, Molecular dynamic 3D simulation
snapshot showing a square solid cluster coexisting with a low-density fluid, with
f= 68 Hz, A = 0.29d and Ly = 4.65d. Light (dark) grey particles are in the upper
(bottom) layer. In both experiment and molecular dynamics simulation
ρo = N/Nm ≈ 1, Nm = 450, h= 1.8d, Lx = 90d, d= 1mm. d, Coarse-graining
procedure: snapshot of the granular system in a fluid state. Vertical lines define the
typical fluid elements, which are characterized by the number density ρ (x, t ) and
the x-longitudinal momentum density j (x, t )= ρ〈vx〉. In all images, only about half
of the cell is shown for clarity.

symmetries and noise-induced transitions between them, as well as
sensitivity to geometrical parameters, namely h and Ly .

As in the experimental set-up, in molecular dynamics the cell
is horizontally divided into Nb bins, as in Fig. 2d, and in each
bin we measure the number density ρ, the granular temperature
Tg and the momentum density ρv. In the case of hard discs,
we also measure the stress pressure tensor Pij in each bin. In
the 3D simulations, this quantity is measured at the walls. To
characterize the transition, in 2D we define a contrast order
parameter c(M) = Mmax − Mmin, where Mmax and Mmin are the
extreme values of a local crystallization order parameter M , which
is unity when the system is locally at its maximum density.

From 2D molecular dynamics we obtain time averages of
the pressure and c(M) by first letting the system relax for a
given time. Figure 3a,b shows these results in the case of elastic
collisions with the walls (εpw = 1) and all friction coefficients
set to µs = µd = 0.05. A constant pressure region is observed
above ρo ≈ 1, which is concomitant with the solid–liquid phase
separation. This coexistence region shrinks when the particle–
particle restitution coefficient εpp decreases, namely, for more
inelastic collisions. Such a plateau is indeed expected once the
system undergoes a transition from a homogeneous fluid state to
coexisting solid and liquid states, as the negative compressibility
part of the pressure–density curve is mechanically unstable and the
pressure reaches a value set by the mechanical equilibrium between
both phases. Notice that for the two values of εpp closer to unity,
the pressure has a peak before entering the plateau. This is because
quasi-elastic granular systems relax slowly and our measurements
were not long enough to fully relax the system. Our results suggest
that somewhere below εpp = 0.4 the plateau might disappear,
namely, a critical point would be reached. In the opposite limit,
the system with quasi-elastic particles becomes totally fluidized,
whereas if particle collisions are more dissipative, both phases are
present. Hence, somewhere in between, a second critical point
certainly exists. Finally, the molecular dynamics data shown in
Fig. 3a reach down to εpp =0.4 because we had difficulties in getting
reliable results for smaller values. When the system becomes too
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Figure 3 Pressure versus density measurements. a,b, Molecular dynamics pressure measurements and contrast order parameter for a confined hard-disc (2D) system.
These results show that the pressure plateau is concomitant with the solid–liquid phase separation. Pressure is normalized by Po = ρmxv 2

o , where ρmx is the maximum mass
density that fits in a monolayer and vo = 2π fA is the vibration’s maximum velocity. Simulation parameters are 40≤ N≤ 400, Lx = 400d, h= 1.8d, A = 0.35d,
f= 10

√
g/d/π, µs = µd = 0.05, εpw = 1, εpp = 0.996 (open circles), 0.9 (filled squares), 0.8 (asterisks), 0.6 (open diamonds) and 0.4 (filled circles), where µs,d stands

for static or dynamic friction coefficients and εpp (εpw ) stands for particle–particle (particle–wall) restitution coefficients. c, Experimental (filled circles) and molecular
dynamics (open circles) results obtained in 3D shallow systems. Set-up: d= 3mm, Lx = 18.5d, Ly = 19d, h= 1.7d, f= 70 Hz and A = 0.034d. A constant-pressure
region is observed in the range ρo = 1–1.3 for experiments, and ρo = 1–1.15 for molecular dynamics. The experimental error bars are due to a combination of uncertainties
associated with the angle measurement as well as standard deviations in other factors affecting the overall granular pressure. For the molecular dynamics results, the errors
are the standard deviation from the mean.

dense and with so much dissipation, the collision rate increases and
the algorithm tends to collapse.

Experimental and 3D molecular dynamics measurements
of the pressure as a function of density also show such a
pressure plateau, as shown in Fig. 3c. In fact, keeping all other
parameters fixed, a constant pressure region is observed in
the range ρo = 1–1.3 for experiments and ρo = 1–1.15 for
molecular dynamics. Observations confirm that this plateau indeed
corresponds to the coexistence region, as a square-symmetry solid
crystal coexisting with a fluid state is observed solely in this region.
With our current experimental set-up, reliable higher-density
pressure measurements are difficult. In the numerical case, the
event-driven algorithm is not suitable for high-density simulations.

MACROSCOPIC DESCRIPTION

To give a macroscopic, dimensionless description of the observed
phase transition, we introduce two scalar order parameters, the
number density and the longitudinal momentum density, ρ and
j, respectively. Owing to the aspect ratio of the system, these order

parameters have a fast {y,z}-dependence and a slow x-dependence.
Averaging over y and z, we end up working with ρ(x,t) and j(x,t).
This reduction is possible owing to a separation of time and space
scales, which allows for a description in terms of the slowly varying
macroscopic variables. These are in fact fluctuating variables, owing
to the elimination of a large number of fast variables whose effect
can be modelled including suitable stochastic terms in the partial
differential equation that describes the system. Figure 2d shows the
coarse graining grid used to obtain these average variables. Using a
similar method as in refs 16,17, we have derived an equation for the
slow macroscopic variables that governs the dynamics of the phase
separation, even when we consider friction. The number density
satisfies the damped van der Waals normal-form equation

∂t t u = ∂xx

[
εu+u3

−∂xx u+ν∂t u
]
−σ∂t u+

√
η∂xζ(x, t), (1)

where ∂t ρ = −∂x j, u = ρ − ρc and ρc is the density at
the critical point (that is, the density value for which the
system pressure exhibits a plateau). The control parameter ε is
inversely proportional to the compressibility coefficient. The term
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Figure 4 Density and longitudinal momentum space–time diagrams for early stages of the solid cluster formation. a,b, Experimental results for ρ and ρ〈vx〉
respectively obtained for f= 70 Hz, A = 0.1d, Ly = 6.2mm, ρo ≈ 1 and Nm = 630. Time and space are normalized by oscillation period T= 1/ f and d respectively.
c,d, Molecular dynamics simulational results for ρ and ρ〈vx〉 respectively, with ρo = 1, Ly = 6.2d, Lz = 1.8d, Lx = 90d, f= 70 Hz and A = 0.1d. e,f, Results from the
damping van der Waals normal form, equation (1), in the limit where noise, friction and viscosity are important, ε = −0.5, u0 = −0.155, η = 0.5, ν = 1.0 and σ = 0.2.
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εu+u3
= P(u) stands for the effective pressure close to the critical

density and ∂xxxx u is an interface tension term, which is usually
neglected in hydrodynamic fluid theory. A derivation of such a
term from a granular hydrodynamic theory has been obtained
from the adiabatic elimination of the granular temperature17. The
term ν∂xxt u is the diffusion one, whereas σ∂t u is a damping term
originated by the friction with the walls. Contrary to refs 16,17,
both friction (σ) and noise (η) terms are essential to describe the
dynamics exhibited by the experimental and molecular dynamics
results presented in this work, as explained below.

Notice that the previous model has a non-equilibrium
potential19 F =

∫
dx{εu2

+ u4/2+ (∂x u)2
}/2, where the last term

accounts for the interface energy. Hence, the dynamics of the system
close to the critical point is of the relaxation type, that is, the
dynamics is characterized by the minimization of the free energyF .
Therefore, close to the critical point (small ε), the granular system
has a dynamic behaviour similar to that of equilibrium systems.

Conservative phase transitions are characterized by diffusive
dynamics. These are described by one order parameter, and
are ubiquitous in nature (see ref. 22 and references therein).
In particular, the electrostatically driven granular media phase
transition is of the diffusive type12,13. On the contrary, equation (1)
is a universal model that describes a non-diffusive conservative
phase transition driven by waves, and has two order parameters
(u and ∂t u). To our knowledge, the solid–liquid transition of a
vibrating monolayer is the first experimental observation of this
type of behaviour. Other experimental candidates that could exhibit
this type of first-order transition are helium in a superfluid state23,24

and a liquid–gas-like coexisting granular monolayer16,17.
The main features of model equation (1) are that it exhibits

phase separation, and for small (large) damping and viscosity the
transient dynamics is led by nonlinear waves (diffusive dynamics).
Experimentally, quantitative results are obtained from high-speed
video analysis. Figure 2d schematically shows the coarse graining
procedure, where each image is divided into Nb bins, which
define our fluid elements. Through particle position detection,
subsequent particle tracking enables us to define, for each of these
bins, the following coarse-grained quantities: horizontal granular
temperature Tg = 〈v2

x + v2
y〉, number density ρ and longitudinal

and transverse momenta ρ〈vx〉 and ρ〈vy〉, respectively. Here,
ρ = n/Nmb, where n is the number of particles in one bin at a given
time and Nmb = Nm/Nb is the maximum number of particles in a
closed-packed monolayer that fit in one bin. Finally, 〈vx〉 and 〈vy〉

are averaged over all particle velocities within each bin.
Representative space–time segments of the history of the system

are used to show the evolution of ρ and ρ〈vx〉 in Fig. 4. Figure 4a,b
shows experimental data, c,d shows hard-sphere molecular
dynamics results and e,f shows the order parameter model
results. Number-density contour lines at ρ = 1 are superposed
on each experimental and molecular dynamics space–time
diagram. For the order parameter model, contour lines represent
ρ = ρc (u = 0). Strong correlations are observed between number
density and longitudinal momentum. In addition, correlations
of both transverse momentum and granular temperature with
number density are also important even though we do not
show them here. Figure 4 shows that experiments, molecular
dynamics and numerical simulation of model (1) show quite
similar dynamic behaviour.

As a consequence of the small number of particles, internal
noise is quite important. In fact, we observe noise-induced
transitions between different states. The coarsening process does
not have a purely diffusive signature as demonstrated by the
comparison of experimental and molecular dynamics space–time
diagrams with those obtained with our order parameter model
(Fig. 4). In addition to noise, inertia is important in the coarsening

dynamics. Indeed, the x-momentum space–time diagrams present
strong positive and negative bursts. In the experiment, these
pulses propagate at a wave speed of order 5–50 cm s−1. Owing to
inelasticity and friction they do not propagate for long. At the
early stages of solid cluster nucleation, these waves are roughly
homogeneously distributed within the cell (Fig. 4b,d,f).

Model (1) exhibits similar dynamic behaviours to those shown
by molecular dynamics and experiments. On the other hand,
parameter exploration enables us to observe several phenomena
such as cluster coarsening dynamics, noise-mediated cluster
interactions, shock and rarefaction waves and so forth. To
understand the dynamics, in the following, we present a brief
description of the phase diagram. The dynamics of the model (1)
is characterized by five parameters {ε,ν,σ,η,u0 =

∫
u(x, t) dx}. In

the plane {ε,u0} there are three characteristic regions: fluid phase
region (ε > −2u2

0), coexistence region (−2u2
0 < ε < −3u2

0) and
spinodal decomposition region (ε > −3u2

0).
In the absence of noise (η = 0), the uniform fluidized states

are the only stable states in the fluid region. This region is
characterized by the perturbation of uniform states undergoing
nonlinear damping wave propagation for small damping and
viscosity. In particular, the system exhibits damped solitary
waves, which become solitons in the limit ν = σ = 0 (ref. 25).
In the spinodal decomposition region, uniform fluidized states
undergo a spatial instability—phase transition—followed by cluster
formation. Later, neighbour clusters merge together to minimize
the non-equilibrium potential. As nonlinear waves transport mass
and momentum, in the inertial regime ({ν,σ} � 1) the cluster
interaction is mediated by waves, which is more efficient than
diffusive coarsening. In the non-inertial regime, the system exhibits
similar behaviour, that is, appearance of clusters; however, waves
are damped and cluster interactions are now mediated by diffusion.
In the coexistence region, depending of the initial conditions, either
the uniform state is stable or two phases coexist. Experimentally, it
is difficult to recognize this region because fluctuations can create
or destroy clusters. The details of the dynamics exhibited by model
(1) will be published elsewhere.

In general, the previous dynamic behaviour is not modified by
the presence of noise. However, in the diffusive regime (ν � 1), the
coarsening exhibited by the system is completely modified by noise,
because noise induces waves and waves lead to cluster interactions.
In fact, both experiments and molecular dynamics are intrinsically
noisy—because of the relatively small number of particles—and
waves are highly damped. Therefore, the observed dynamics should
correspond to this noisy diffusive regime. In this regime, model (1)
with low-intensity noise could account for the coarsening dynamics
exhibited by electrostatically driven granular media12,13.

METHODS

EXPERIMENTAL DETAILS
Granular pressure measurements are obtained in a quasi-2D set-up, with
d = 3 mm, Lx = 18.5d, Ly = 19d and h = 1.7d. This last value was chosen to
force the solid phase to have a square symmetry, avoiding possible symmetry-
dependence effects on the measured pressure. The system has stainless-steel
walls and bottom base, and a static dissipative acrylic top lid. One wall is a
55.5-mm-wide, 57.6-mm-long pendulum (mass M = 138.9 g). Measurements
of its equilibrium angle 〈θ〉 allow force—and hence pressure—measurements
through F ≈ Mg〈θ〉/2 for small angles26. The number of particles was varied
between 300 and 580 to obtain ρo = 0.74–1.45.

The quasi-1D set-up consists of a 14.5-cm-long and 12.1-cm-wide
stainless-steel plate, with four 1.5-mm-thick, 10-mm-wide aluminium walls. Of
these, three are fixed and the fourth one is movable, allowing us to vary Ly/d
continuously from 0 to 90, within ±0.02, although for a given run it is held
constant by a set of screws. The system has a static dissipative acrylic top lid
and Lx/d = 90, where d = 1 mm is the particle diameter. The system is shaken
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sinusoidally by means of an electromechanical vibrator, with an amplitude A
and frequency f . The vibration is monitored by an accelerometer and all of
the set-up is illuminated by an array of halogen lamps. A high-speed camera
(IDT X3, 1,045 fps, 1,280×800 pix2) allows visualization from above, and by
particle position detection, subsequent particle tracking is possible27. Images
presented in Fig. 2a,b are obtained from an average of 100 images acquired at
30 fps. Space–time diagrams of Fig. 4a,b were computed from images acquired
at 500 fps.

In all experiments, stainless-steel spheres were used, with the following
dissipation parameters: µd =0.13±0.03,µs =0.16±0.01 and εpp =0.87±0.04
(steel–steel); µd = 0.22 ± 0.03,µs = 0.28 ± 0.01 and εpw = 0.92 ± 0.02
(acrylic–steel); µd = 0.21±0.04,µs = 0.23±0.01 and εpw = 0.56±0.02
(aluminium–steel).

MOLECULAR DYNAMIC DETAILS
Our computer simulations are based in an event-driven algorithm for N hard
discs (spheres) in two (three) dimensions. These particles have both translation
and rotation degrees of freedom and all particles are alike (same radius and
mass). Collisions are instantaneous and the collision rule makes use of four
coefficients: normal and tangential restitution coefficients and static and
dynamic friction coefficients28. An entirely similar collision rule is used for
particle–wall collisions introducing a second set of four coefficients.

In 2D molecular dynamics, there are horizontal periodic boundary
conditions and the cell (horizontal walls) vibrates vertically. The vibrating cell
does not move sinusoidally but follows a parabolic movement. The height of its
base is

zbase =


A−

16A

T2

(
t −

T

4

)2

, 0 ≤ t <
T

2
,

16A

T2

(
t −

T

2

)
(t −T),

T

2
≤ t < T ,

(2)

where A is the amplitude, T is the period and t is the time modulus T . Owing
to the parabolic movement, the acceleration has a constant absolute value,
acell = 32A/T2

= 8Aω2/π2.
The crystallization order parameter M is defined as

M = γ

∣∣∣∣∣∑
i

(−1)i zi −h/2

xi+1 −xi

∣∣∣∣∣,
where the index i in the sum refers to the particles in each bin, and xi and zi

refer to the horizontal and vertical coordinates of each particle. The coefficient
γ is chosen so that M is unity when the system is locally at its maximum density.

The pressure—the total longitudinal momentum flux—and the contrast
order parameter are obtained by letting the system relax during 2,000 oscillation
cycles of the cell and then accumulating data during another 2,000 cycles to
finally obtain the time averages.

In the case of 3D molecular dynamics, collisions with all walls are inelastic
with friction. The restitution and friction coefficients for collisions of the grains
with the top horizontal wall are different from that of the other walls, as in the
experiment. Lateral walls oscillate vertically at the same amplitude, frequency
and in phase with the movement of the horizontal walls. To compare 3D
molecular dynamics results with experiments, we use dissipation parameters
very close, within experimental errors, to the experimental ones.
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