
Advances in Engineering Software 94 (2016) 46–59

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Fundamental concepts in the Cyclus nuclear fuel cycle simulation

framework

Kathryn D. Huff a,∗, Matthew J. Gidden b, Robert W. Carlsen b, Robert R. Flanagan c,
Meghan B. McGarry b, Arrielle C. Opotowsky b, Erich A. Schneider c, Anthony M. Scopatz d,
Paul P.H. Wilson b

a University of California - Berkeley, Department of Nuclear Engineering, Berkeley, CA 94720, United States
b University of Wisconsin - Madison, Department of Nuclear Engineering and Engineering Physics, Madison, WI 53706, United states
c University of Texas - Austin, Department of Mechanical Engineering, Nuclear and Radiation Engineering Program, Austin, TX 78758, United States
d University of South Carolina, Nuclear Engineering Program, Columbia, SC 29201, United States

a r t i c l e i n f o

Article history:

Received 10 September 2015

Revised 17 January 2016

Accepted 24 January 2016

Available online 12 February 2016

Keywords:

Nuclear fuel cycle

Simulation

Agent based modeling

Nuclear engineering

Object orientation

Systems analysis

a b s t r a c t

As nuclear power expands, technical, economic, political, and environmental analyses of nuclear fuel cy-

cles by simulators increase in importance. To date, however, current tools are often fleet-based rather

than discrete and restrictively licensed rather than open source. Each of these choices presents a chal-

lenge to modeling fidelity, generality, efficiency, robustness, and scientific transparency. The Cyclus nu-

clear fuel cycle simulator framework and its modeling ecosystem incorporate modern insights from sim-

ulation science and software architecture to solve these problems so that challenges in nuclear fuel cy-

cle analysis can be better addressed. A summary of the Cyclus fuel cycle simulator framework and its

modeling ecosystem are presented. Additionally, the implementation of each is discussed in the context

of motivating challenges in nuclear fuel cycle simulation. Finally, the current capabilities of Cyclus are

demonstrated for both open and closed fuel cycles.

© 2016 Elsevier Ltd. All rights reserved.

t

m

t

fl

r

N

r

t

c

r

p

i

fi

i

g

fi

e

b

u

1. Introduction

As nuclear power expands, technical, economic, political, and

environmental analyses of nuclear fuel cycles by simulators in-

crease in importance. The merits of advanced nuclear technologies

and fuel cycles are shaped by myriad physical, nuclear, chemical,

industrial, and political factors. Nuclear fuel cycle simulators must

therefore couple complex models of nuclear process physics, facil-

ity deployment, and material routing.

Indeed, the cardinal purpose of a dynamic nuclear fuel cycle

simulator is to calculate the time- and facility-dependent mass

flow through all or part the fuel cycle. Dynamic nuclear fuel cy-

cle analysis more realistically supports a range of simulation goals

than static analysis [1]. Historically, dynamic nuclear fuel cycle

simulators have calculated fuel cycle mass balances and perfor-

mance metrics derived from them using software ranging from

spreadsheet-driven flow calculators to highly specialized system

dynamics modeling platforms.

To date, current tools are typically distributed under restric-

tive rather than open source licenses, having been developed in

industrial contexts or using commercial software platforms. Addi-
∗ Corresponding author. Tel.: +1 28 17341342

E-mail address: huff@berkeley.edu, katyhuff@gmail.com (K.D. Huff).

T

c

c

http://dx.doi.org/10.1016/j.advengsoft.2016.01.014

0965-9978/© 2016 Elsevier Ltd. All rights reserved.
ionally, having often been developed for customized applications,

any possess inflexible architectures, never having been designed

o enable new features or extensions. Finally, many model only

eet-level dynamics of facilities and materials rather than discrete

esolution of those individual agents and objects. When the DOE-

E Fuel Cycles Technologies Systems Analysis Campaign developed

equirements necessary in a next generation fuel cycle simula-

or, three main failure modes were associated with those software

hoices. First, they discourage targeted contribution and collabo-

ation among experts. Next, they hobble efforts to directly com-

are modeling methodologies. Finally, they over-specialize, render-

ng most tools applicable to only a subset of desired simulation

delities, scales, and applications. Those three constraints were

dentified as presenting significant challenges to modeling fidelity,

enerality, efficiency, robustness, and scientific transparency in the

eld of fuel cycle analysis [2].

The Cyclus nuclear fuel cycle simulator framework and its mod-

ling ecosystem, the suite of agents and other physics plug-in li-

raries compatible with it, incorporate modern insights from sim-

lation science and software architecture to solve these problems.

hese modern methods simultaneously enable more efficient, ac-

urate, robust, and validated analysis. This next-generation fuel cy-

le ’simulator is the result of design choices made to:

http://dx.doi.org/10.1016/j.advengsoft.2016.01.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.01.014&domain=pdf
mailto:huff@berkeley.edu
mailto:katyhuff@gmail.com
http://dx.doi.org/10.1016/j.advengsoft.2016.01.014

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 47

a

a

m

d

t

F

c

i

t

p

o

d

t

t

i

l

fi

o

i

b

1

d

p

f

g

o

f

p

b

c

i

s

q

o

a

p

u

a

c

r

l

(

s

m

d

m

g

u

c

t

e

t

m

m

i

o

F

c

l

a

a

s

t

(

c

w

r

a

a

d

o

N

t

l

I

r

s

m

t

b

s

t

a

u

a

b

s

b

r

r

1

l

a

c

a

a

i

e

o

n

d

f

a

o

F

a

g

o

t

w

f

c

t

t

t

• support access to the tool by fuel cycle analysts and other users,
• encourage developer extensions,
• enable plug-and-play comparison of modeling methodologies,
• and address a range of analysis types, levels of detail, and ana-

lyst sophistication.

Cyclus is a dynamic, agent-based model, which employs

modular architecture, an open development process, discrete

gents, discrete time, and arbitrarily detailed isotopic resolution of

aterials. Experience in the broader field of systems analysis in-

icates that agent-based modeling enables more flexible simula-

ion control than system dynamics, without loss of generality [3].

urthermore, openness allows cross-institutional collaboration, in-

reases software robustness [4,5], improves the strength and qual-

ty of results through peer review [6–10], and cultivates an ecosys-

em of modeling options. This ecosystem is modular, being com-

rised of dynamically loadable, interchangeable, plug-in libraries

f fuel cycle component process physics that vary in their scope,

epth, and fidelity. This modularity allows users and developers

o customize Cyclus to analyze the cases that are of interest to

hem rather than any custom application the simulator was orig-

nally developed to address. Additionally, that customizability al-

ows users and developers to address those cases at the level of

delity necessary for their application. The fundamental concepts

f the Cyclus nuclear fuel cycle simulator capture these modern

nsights so that novel challenges in nuclear fuel cycle analysis can

e better addressed.

.1. Background

Nuclear fuel cycle simulators drive research development and

esign (RD&D) by calculating ‘metrics’, quantitative measures of

erformance that can be compared among fuel cycle options. The

easibility of the technology development and deployment strate-

ies which comprise a fuel cycle option, the operational features

f nuclear energy systems, the dynamics of transitions between

uel cycles, and many other measures of performance can be ex-

ressed in terms of these metrics. For example, economic feasi-

ility is often measured in levelized cost of electricity (LCOE), a

ombination of fuel and operating costs normalized by electric-

ty generation, while environmental performance might be mea-

ured by spent fuel volume, radiotoxicity, or mined uranium re-

uirements. A meta-analysis of fuel cycle systems studies identified

ver two dozen unique quantitative metrics spanning economics

nd cost, environmental sustainability and waste management im-

acts, safety, security and nonproliferation, resource adequacy and

tilization, among others [11]. With few exceptions, these metrics

re derived from mass balances and facility operation histories cal-

ulated by a fuel cycle simulator. For example, where nuclear waste

epository burden is derived from ejected fuel masses, water pol-

ution or land use can be derived from facility operational histories

as in [12]).

However, methods for calculating those metrics vary among

imulators. Some model the system of facilities, economics, and

aterials in static equilibrium, while other simulators capture the

ynamics of the system. Similarly, while some simulators discretely

odel batches of material and individual facilities, others aggre-

ate facilities into fleets and materials into streams. Some sim-

lators were designed to model a single aspect of the fuel cy-

le in great detail while neglecting others. For example, a simula-

or created for policy modeling might have excellent capability in

conomics while capabilities for tracking transformations in ma-

erial isotopics and the effects of isotopics on technology perfor-

ance are neglected. The Code for Advanced Fuel Cycles Assess-

ent (CAFCA)[13] simulator is problem-oriented in this way, hav-

ng elected to neglect isotopic resolution in favor of integral effects.
Historically, domestic national laboratories have driven devel-

pment and regulated the use of their own tools: the Variable

uel Cycle Simulation Model (VISION)[14], Dynamic Model of Nu-

lear Development (DYMOND)[15], and Nuclear Fuel Cycle Simu-

ator (NFCSim)[16,17]. Internationally, other laboratories have cre-

ted their own as well, such as Commelini-Sicard (COSI) [18–21]

nd ORION [22]. Finally, some simulators initiated in a national lab

etting have been continued as propriety, industry-based simula-

ors, such as Dynamic Analysis of Nuclear Energy System Strategies

DANESS)[23]. Outside the national laboratories, researchers have

reated new nuclear fuel cycle simulation tools when existing tools

ere not available or not sufficiently general to calculate their met-

ics of interest. With limited access to the national laboratory tools

nd a need to customize them for research purposes, universities

nd private industry researchers have “reinvented the wheel” by

eveloping tools of their own from scratch and tailored to their

wn needs. Examples include CAFCA [24] and Dynamic Analysis of

uclear Energy Systems Strategies (DESAE)[17,25,26].

Cyclus emerged from a line of tools seeking to break this prac-

ice. Its precursor, Global Evaluation of Nuclear Infrastructure Uti-

ization Scenarios (GENIUS) Version 1 [27,28], originated within

daho National Laboratory (INL) and sought to provide generic

egional capability. Based on lessons learned from GENIUS Ver-

ion 1, the GENIUS Version 2 [29,30] simulator sought to provide

ore generality and an extensible interface to facilitate collabora-

ion. The Cyclus project then improved upon the GENIUS effort

y implementing increased modularity and encapsulation. The re-

ult is a dynamic simulator that treats both materials and facili-

ies discretely, with an architecture that permits multiple and vari-

ble levels of fidelity. Using an agent-based framework, the sim-

lator tracks the transformation and trade of resources between

utonomous regional and institutional entities with customizable

ehavior and objectives. Each of these concepts (agent-based, re-

ource tracking, and regional as well as institutional entities) will

e described in their own sections (Sections 2.2, 2.3.1, and 2.2.2,

espectively). Together, they provide a capability for extension and

euse beyond that pursued by any existing fuel cycle simulator.

.2. Motivation

The Cyclus paradigm enables targeted contribution and col-

aboration within the nuclear fuel cycle analysis community to

chieve two important goals: lower the barrier for users to include

ustom nuclear technologies and facility types in their fuel cycle

nalyses while improving the ability to compare simulations with

nd without those custom concepts. This essential capability

s absent in previous simulators where user customization and

xtensibility were not design objectives. While the modular and

pen architecture of Cyclus is necessary to meet these goals, it is

ot sufficient. Agent interchangeability is also required to facilitate

irect comparison of alternative modeling methodologies and

acility concepts. With this concept at its core, Cyclus provides

platform for users to quickly develop the capabilities at a level

f detail and validation necessary for their unique applications.

inally, Cyclus is applicable to a broader range of fidelities, scales,

nd applications than other simulators, due to the flexibility and

enerality of its agent-based modeling (ABM) paradigm and discrete,

bject-oriented approach.

This structure recognizes that specialists should utilize their

ime and resources in modeling the specific process associated

ith their area of expertise (e.g., reprocessing and advanced fuel

abrication), without having to create a model of the entire fuel

ycle to serve as its host. Cyclus supports them by separating

he problem of modeling a physics-dependent supply chain into

wo distinct components: a simulation kernel and archetypes

hat interact with it. The kernel is responsible for supporting the

48 K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59

t

w

1

w

c

s

v

a

t

t

s

r

T

a

r

v

d

a

b

b

s

i

t

d

s

fi

s

n

o

t

t

W

t

t

c

f

F

f

t

t

a

w

i

u

m

q

a

q

e

2

m

i

i

t

m

p

b

fl

a

deployment and interaction logic of entities in the simulation.

Physics calculations and customized behaviors of those entities are

implemented within archetype classes.

Ultimately, modeling the evolution of a physics-dependent, in-

ternational nuclear fuel supply chain is a multi-scale problem

which existing tools cannot support. They have either focused on

macro effects, e.g., the fleet-level stocks and flows of commodities,

or micro effects, e.g., the used-fuel composition of fast reactor fuel.

Each focus has driven the development of specialized tools, render-

ing the task of answering questions between the macro and micro

levels challenging within a single tool. In contrast, the open, exten-

sible architecture and discrete object tracking of Cyclus allow the

creation and interchangeability of custom archetypes at any level

of fidelity and by any fuel cycle analyst.

1.2.1. Open access and development practices

The proprietary concerns of research institutions and security

constraints of data within fuel cycle simulators often restrict ac-

cess. Use of a simulator is therefore often limited to its institution

of origin, necessitating effort duplication at other institutions and

thereby squandering broader human resources. License agreements

and institutional approval are required for most current simulators

(e.g. COSI6, DANESS, DESAE, EVOLCODE, FAMILY21, NFCSim)[31],

including ORION, and VISION. Even when the source code is un-

restricted, the platform on which it relies (e.g. VENSIM) is often

restricted or costly. The MIT CAFCA software, for example, relies

on the commercially licensed VENSIM product as a platform. Cy-

clus, on the other hand, is written in C++ for which freely available

development tools and an open standard are available. Further, Cy-

clus relies only on open source, freely available libraries. As such,

it provides fully free and open access to all users and developers,

foreign and domestic.

Moreover, both technical and institutional aspects of the soft-

ware development practices employed by the Cyclus community

facilitate collaboration. Technically, Cyclus employs a set of tools

commonly used collaborative software development that reduce

the effort required to comment on, test and ultimately merge in-

dividual contributions into the main development path. For many

of the simulation platforms adopted by previous simulators, there

were technical obstacles that impeded this kind of collaboration.

Institutionally, Cyclus invites all participants to propose, discuss

and provide input to the final decision making for all important

changes.

1.2.2. Modularity and extensibility

Modularity is a key enabler of extending the scope of fuel

cycle analysis within the Cyclus framework. Changes that are

required to improve the fidelity of modeling a particular agent, or

to introduce entirely new agents, are narrowly confined and place

no new requirements on the Cyclus kernel. Furthermore, there are

few assumptions or heuristics that would otherwise restrict the

algorithmic complexity that can be used to model the behavior of

such agents.

For example, most current simulators describe a finite set of

acceptable cycle constructions (once through, single-pass, multi-

pass). That limits the capability to create novel material flows and

economic scenarios. The Cyclus simulation logic relies on a mar-

ket paradigm, parameterized by the user, which flexibly simulates

dynamic responses to pricing, availability, and other institutional

preferences.

This minimal set of mutual dependencies between the kernel

and the agents is expressed through the dynamic resource ex-

change (DRE) that provides a level of flexibility that does not ex-

ist in other fuel cycle simulators. It creates the potential for novel

agent archetypes to interact with existing archetypes as they en-
er and leave the simulation over time and seek to trade materials

hose specific composition may not be known a priori.

.2.3. Discrete facilities and materials

Many fuel cycle phenomena have aggregate system-level effects

hich can only be captured by discrete material tracking [2]. Cy-

lus tracks materials as discrete objects. Some current fuel cycle

imulation tools such as COSI [24,26,32], FAMILY21[26], GENIUS

ersion 1, GENIUS version 2, NFCSim, and ORION also possess the

bility to model discrete materials. However, even among these,

he ability to model reactor facilities individually is not equivalent

o the ability to model distinct activities. COSI, for example, has

ome support for modeling reactors individually, but according to a

ecent benchmark [33], it models many reactors operating in sync.

hat is, refueling and discharging occur simultaneously for all re-

ctors. While Cyclus allows this type of fleet-based aggregation of

eactor behavior, Cyclus also enables operations in each facility to

ary independently of any others in the simulation.

Similarly, the ability to model disruptions (i.e. facility shut-

owns due to insufficient feed material or insufficient processing

nd storage capacity) is most readily captured by software capa-

le of tracking the operations status of discrete facilities [2]. Fleet-

ased models (e.g. VISION) are unable to capture this gracefully,

ince supply disruptions are modeled as a reduction in the capac-

ty of the whole fleet. All of the software capable of discrete ma-

erials have a notion of discrete facilities, however not all handle

isruption in the same manner. DESAE, for example, does not allow

hutdown due to insufficient feedstock. In the event of insufficient

ssile material during reprocessing, DESAE borrows material from

torage, leaving a negative value [26]. The Cyclus framework does

ot dictate such heuristics. Rather, it provides a flexible framework

n which either method is possible.

A final benefit of the discreteness of facilities and materials is

heir power when combined. The ability to track a material’s his-

ory as it moves from one facility to another is unique to Cyclus.

hile some current simulators track materials in discrete quanta,

hey do not necessarily preserve the identity of each quantum as

he materials move around the fuel cycle. When coupled with Cy-

lus’ individual facility modeling, this capacity becomes distinct

rom what other fuel cycle simulators are able to do. So, while

AMILY21 and COSI can identify whether a batch being discharged

rom a reactor originated in mixed oxide (MOX) fabrication rather

han fresh uranium oxide (UOX) fabrication, Cyclus can go fur-

her, tracking which of the fresh batches contained material from

particular discharged batch. By extension, Cyclus can also report

hich individual facilities the batch passed through and in which

t originated. The ability to track a single material through the sim-

lation, though it might be split, transmuted, or merged with other

aterials along the way, allows Cyclus to answer more data-rich

uestions that previous simulators have been unable to ask. For ex-

mple, it allows precise tracking of specific material diversions, so

ueries about nonproliferation robustness in a facility can be levied

ither in the context of a single event or a series of nefarious acts.

. Methodology and implementation

A modular, agent-based modeling (ABM) approach is ideal for

odeling the coupled, physics-dependent supply chain problems

nvolving material routing, facility deployment, and regional and

nstitutional hierarchies which arise in fuel cycle analysis. Addi-

ionally, the choice to build Cyclus on open source libraries in

odern programming languages enables both remote and multi-

rocess execution on a number of platforms. This section begins

y describing the general design features that make Cyclus both

exible and powerful: cluster-ready software and dynamically load-

ble libraries. The ABM framework is then described, focusing on

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 49

Fig. 1. The Cyclus core provides APIs that abstract away the details in the kernel and allow the archetypes to be loaded into the simulation in a modular fashion.

i

s

f

c

p

2

c

a

s

a

g

a

fi

j

l

s

i

t

u

s

t

c

d

u

2

(

c

o

t

r

i

p

p

m

a

b

o

h

f

f

s

p

c

M

c

c

t

(

c

(

g

n

t

C

p

r

i

2

t

s

s

fi

d

a

l

a

p

c

c

a

c

m

f

ts implementation and benefits in a fuel cycle context. A discus-

ion of the time-dependent treatment of discrete resources follows,

ocusing on the DRE. Support for users and developers via the Cy-

amore library of archetypes and the experimental toolkit are also

resented. Lastly, the methods for quality assurance are outlined.

.1. Modular software architecture

The architecture of Cyclus allows developers to define nu-

lear fuel cycle processes independent of the simulation logic. To

chieve this, agents are developed which represent facilities, in-

titutions, and regions comprising the nuclear fuel cycle. These

gents are created using the Cyclus framework application pro-

ramming interface (API), a set of functions and protocols which

ssist in agent development and specify how agents should be de-

ned. This encapsulated ‘plug-in’ design choice provides two ma-

or benefits. First, analysts can take advantage of the simulation

ogic API and archetype ecosystem when they apply Cyclus to their

pecific problem. A modeler can focus on creating or customiz-

ng nuclear facility, institution, resource, and toolkit models within

heir specific area of technical expertise. Second, because Cyclus

ses a modular archetype approach, comparing two archetypes is

traightforward. For example, if an analyst would like to compare

he effect of using different models to determine the input fuel

omposition for fast reactors, fuel fabrication archetypes can be

eveloped and interchanged while keeping the rest of the models

sed in the simulation fixed.

.1.1. Cluster-ready software

Many fuel cycle simulators rely on commercial, off the-shelf

COTS) and Windows-only software that limits performance on and

ompatibility with resource computing infrastructures (e.g. cluster

r cloud computing). This constrains the possible scope of simula-

ions and increases the wall-clock time necessary to conduct pa-

ameterized sensitivity analyses and other multi-simulation stud-

es. For example, large scale sensitivity analyses to quantify the de-

endence of fuel cycle outcomes are only feasible in a massively

arallelized environment. To enable such research, Cyclus, is pri-

arily written in C++ and relies on libraries supported by Linux

nd UNIX (including Ubuntu and OSX) platforms, which are flexi-

le and support parallelization.
Cyclopts [34], a proof-of-principle Cyclus-enabled application

n such a large computer system, uses UW-Madison’s HTCondor

igh-throughput computing (HTC) infrastructure to study DRE per-

ormance and outcomes. For example, an investigation of the ef-

ect of solution degeneracy, a commonly observed phenomenon in

cenarios with individual facilities and basic (e.g., commodity-only)

reference definitions, was performed for three different fuel cy-

les: once-through, MOX fast reactor-thermal reactor cycles, and

OX-thorium oxide (ThOX) recycle in fast reactors-thermal reactor

ycles. Objective coefficients were generated based on two factors:

ommodity-facility pairings and facility location. The population of

he possible values of commodity-facility pairings is always small

O(10)). The size of the population of possible values of the lo-

ation effect was investigated for values of zero, 10, and infinity

i.e., any real number). The study additionally included an investi-

ation of problem-scaling behavior in order to quantify the mag-

itude and rate-of-increase of DRE solution times as a function of

he simulation-entity population for each fuel cycle [35]. In total,

yclopts has run over 105 jobs, comprising more than 60,000 com-

ute hours. The HTC infrastructure has separately been utilized to

un and collect information from full Cyclus simulations running

n parallel on 103 machines reliably for order 105 simulations.

.1.2. Dynamically loadable libraries

The Cyclus architecture encourages efficient, targeted contribu-

ion to the ecosystem of archetype libraries. With Cyclus, a re-

earcher can focus on generating an archetype model within their

phere of expertise while relying on the contributions of others to

ll in the other technologies in the simulation. Similarly, individual

evelopers may explore different levels of complexity within their

rchetypes, including wrapping other simulation tools as loadable

ibraries within Cyclus.

Cyclus achieves this behavior by implementing generic APIs

nd a modular architecture via a suite of dynamically loadable

lug-in libraries (pictured in Fig. 1). By anticipating the possible

lasses of information required by the simulation kernel, the Cy-

lus APIs facilitate information passing between the plug-in agents

nd the core framework. Though common in modern software ar-

hitecture, such a plug-in paradigm has not previously been imple-

ented in a nuclear fuel cycle simulator. It allows the core Cyclus

ramework to operate independently from the plug-in libraries, and

50 K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59

Fig. 2. The Cyclus framework enables fully open, partially open, and fully closed

collaborations [36].

t

t

o

l

(

n

p

F

s

m

n

g

2

c

n

a

i

t

u

o

e

s

e

n

a

t

h

a

r

D
t

b

f

t

2

f

f

t

a

l

c

i

t

the dynamically loadable plug-ins to be the primary mechanism

for extending Cyclus’ capabilities independent of the core.

An additional benefit is the ability for contributors to choose

different distribution and licensing strategies for their contri-

butions. Users and modelers control the accessibility of their

archetypes and data sets (See Fig. 2). In particular, since the clean

plug-in architecture loads libraries without any modifications to

the Cyclus kernel, closed-source archetypes can be used with

the simulator alongside open source archetypes without transfer

of sensitive information. This architecture allows closed-source li-

braries (e.g., those representing sensitive nuclear processes and

subject to export control) to be developed and licensed privately.

Finally, dynamically loadable libraries enable Cyclus to easily

handle varying levels of simulation complexity. Hence a single sim-

ulation engine can be used by both users interested in big-picture

policy questions as well as users focused on detailed technical

analyses. They merely choose their preferred level of modeling

depth from among the available libraries in the ecosystem.

2.2. Agent-based paradigm

Cyclus implements an agent-based modeling paradigm. ABM

enables model development to take place at an agent level rather

than a system level. In the nuclear fuel cycle context, for exam-

ple, an analyst can design a reactor agent that is entirely indepen-

dent from a fuel fabrication agent. Defining the behavior of both

agents according to the API contract is sufficient for them to in-
Fig. 3. Inheriting Cyclus class interfaces, such as the Agent, Facility, Institution
functionality. In the above example, the Dummy archetype simply inherits from Region i
eract with one another as bona fide agents in the simulation. The

wo archetype libraries can be used in the same simulation with-

ut any shared knowledge, allowing modelers to construct a simu-

ation from building blocks of many types and origins.

Furthermore, the ABM paradigm is more flexible and intuitive

from both a developer and user perspective) than the system dy-

amic approach used in current simulators. System dynamics is a

opular approach for modeling nuclear fuel cycles [13,23,24,37].

ormally however, system dynamics models are simply a strict

ubset of agent-based models [3]. That is, any system dynamics

odel can be translated into an agent-based model. ABM tech-

iques therefore enable a broader range of simulations in a more

eneric fashion.

.2.1. Agent interchangeability

ABM is inherently object-oriented because agents represent dis-

rete, independently acting objects. Fig. 1 illustrates the modular

ature of Cyclus archetypes. The core of the Cyclus simulator cre-

tes a set of classes on which agent plug-ins are based. Agent plug-

ns utilize the generic core APIs that define agent-to-agent interac-

ion as well as agent-to-environment interaction. For example, they

se the resource exchange paradigm API for trading resources with

ne another. For the archetype developer, these interfaces provide

normous power simply. The API abstracts away details unneces-

ary to specifying the archetype behavior, while providing all nec-

ssary functionality for interacting with the Cyclus simulation ker-

el. For the user, multiple archetypes that inherit the same APIs

re interchangeable in a simulation.

Critically, this novel functionality enables the comparison be-

ween agent implementations. For example, an archetype that in-

erits the Region interface, as in Fig. 3, is interchangeable with

ny other Region agent.

In this way, a researcher can directly compare two different

eactor modeling implementations (perhaps the imaginary classes

etailedReactor and SimpleReactor) simply by exchanging

he two corresponding archetypes. That is, two reactor archetypes

oth inheriting from the Facility class are indistinguishable

rom a simulation perspective. This can be done with any agent

ype, where agents can be “Regions,” “Institutions,” or “Facilities.”

.2.2. Regions, institutions, and facilities

Cyclus provides a novel representation of entities in the nuclear

uel cycle that reflects the reality in international nuclear power:

acilities implementing individual fuel cycle technologies, institu-

ions managing those facilities, and regions providing geographical

nd political context for institutions and facilities. While few simu-

ators have provided any notion of static regional effects [2,31], Cy-

lus allows for both regions and institutions to be first-class agents

n simulated fuel cycles. The fundamental interactions for each en-

ity are implemented in a corresponding archetype class in Cyclus,
, and Region classes, abstracts away unnecessary details while exposing powerful

n order to become a bona fide Region-type Agent.

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 51

i

A

i

R

h

i

f

a

s

s

a

h

F
i

c

t

e

e

2

d

m

t

m

a

f

t

t

t

c

m

p

v

e

a

m

i

t

2

m

r

t

a

y

b

o

c

T

a

t

D

A

 decay A +4

B

 d t = 1 d t = 1 decay A +1

C

 decay A +3

 d e c a y B + 3

 d t = 2 d e c a y B + 2

 d t = 1

Fig. 4. A simple decay line cache holding compositions A, B, C, and a yet-

uncomputed composition D. B comes from decaying A 1 time step. C comes from

decaying B 2 time steps, etc. Black represents the cache for this particular compo-

sition chain. Blue indicates decay operations that can be satisfied by cache lookups.

If A needs to be decayed 1 time step (A +1), a quick lookup returns the previously

computed B. Decaying B 3 time steps requires a decay calculation to compute a

new composition D, but subsequent requests such as decaying A 4 time steps will

not require any recalculation.

w

r

t

c

a

t

i

f

a

t

d

a

l

t

I

t

t

i

t

q

c

a

c

a

.e., the Region class, Institution class, and Facility class.

rchetype developers can then build on the provided functional-

ty by inheriting from the appropriate class. Cyclus implements a

egion-Institution-Facility (RIF) relationship through a parent-child

ierarchy where regions are the parents of institutions which are,

n turn, the parents of facilities. In other words, RIF hierarchies

orm a directed acyclic graph (DAG),1 with regions as root nodes

nd facilities as leaf nodes.

Two primary consequences arise from this structure. First, in-

titutions are nominally responsible for deploying and decommis-

ioning facilities. Accordingly, advanced logic regarding building

nd decommissioning can be implemented on top of those be-

aviors inherited from the Institution interface. Second, the

acility class implements the Trader interface to participate

n resource exchange, and institutions and regions, respectively,

an adjust the resource flow preferences of their managed facili-

ies. Importantly, this capability allows for the modeling of prefer-

ntial regional trading of resources (e.g., tariffs) as well as prefer-

ntial institutional trading (e.g., long-term contracts).

.3. Discrete objects

Cyclus models facilities, institutions, regions, and resources as

iscrete objects. A discrete resource model allows for a range of

odeling granularity. In the macroscopic extreme, it is equivalent

o time-stepped continuous flow. In the microscopic extreme, the

odel is capable of representing arbitrarily small material objects

t isotopic resolution. In this way, Cyclus is applicable across the

ull range of modeling fidelity.

Fleet-based, lumped-material models do not distinguish be-

ween discrete facility entities or materials. However, some ques-

ions require resolution at the level of individual facilities and ma-

erials. As a result, many detailed performance metrics cannot be

aptured with previously existing fleet-based models. For example,

eaningful models of spent nuclear fuel storage transport, and dis-

osal strategies, require representation of discrete casks and their

arying isotopic compositions.

For all of the reasons that the ABM paradigm in Section 2.2

nables novel simulations, multiple use cases require that these

gents, such as the regions, institutions, and facilities in Cyclus,

ust be represented as discrete objects. For instance, tracking of

ndividual shipments is only viable if materials and resources are

racked as discrete objects.

.3.1. Resources and materials

Another such use case seeks to capture system vulnerability to

aterial diversion. Provenance and trade-history of distinct mate-

ials is the fundamental information unit in such studies, and so

his type of analysis requires discrete simulation of a target facility

nd the individual materials modified within it. Material risk anal-

sis, therefore, demands that both facilities and materials should

e discretely modeled objects like those in Cyclus.

In Cyclus, agents can transfer discrete resource objects among

ne another. Cyclus supports two types of resources:

• materials: these represent typical nuclear materials with nu-

clide compositions;
• products: these can represent any user-defined measure: car-

bon credits, build permits, employees, etc.

All operations performed on every resource object (splitting,

ombining, decay, etc.) are tracked in detail as they are performed.

his information includes the agent that created each resource
1 DAGs are common graph theoretic structures whose most important feature is

lack of cycles, i.e., there is a single path from the root node to any other node in

he graph.

s

f

l

p

hen it was introduced into the simulation. The parentage of each

esource is also tracked. This makes it possible to follow the his-

ory of resources as they are transferred between agents.

The Cyclus kernel has built-in experimental support for decay

alculations. Materials store the time since their last decay and

gents are free to invoke the decay function on them as desired

o decay them to the current simulation time. Cyclus can operate

n 3 decay modes, with 1 additional mode likely to be added in a

uture release:

• “manual” (currently implemented) is the default mode where

agents decay materials when requested by an archetype,
• “never” (currently implemented) globally turns off all decay.

The Material decay function does nothing,
• “lazy” (currently implemented) decays material automatically

whenever its composition is observed (e.g. when an agent

queries information about a material’s 239Pu content),
• “periodic” (future) automatically decays all materials in a simu-

lation with some fixed frequency.

When decay is invoked, a material checks to see if it contains

ny nuclides with decay constants that are significant with respect

o the time change since the last decay operation. If none of the

ecay constants are significant, no decay calculation is performed

nd the material remains unchanged. This error does not accumu-

ate because the next time the material’s decay function is invoked,

he time change will be larger.

Cyclus has no notion of “tracked” versus “untracked” nuclides.

n Cyclus, the composition of a material is represented by an arbi-

rarily large list (potentially thousands) of nuclides. Agents are free

o treat nuclides present in materials any way they please - includ-

ng ignoring them. It is the responsibility of archetype developers

o choose how to handle potentially full-fidelity compositions.

In large simulations, many material objects may change fre-

uently. Material decay can also contribute significantly to such

hanges. In order to help avoid unnecessary runtime performance

nd database size impacts, compositions in Cyclus have some spe-

ial features. In particular, compositions are immutable once cre-

ted. This allows multiple material objects to hold references to the

ame composition safely. Additionally, new compositions resulting

rom decay are cached and used to avoid redundant decay calcu-

ations. Fig. 4 illustrates how this decay history cache works. Com-

osition immutability in concert with decay history caching help

52 K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59

Fig. 5. The flow graph representing three suppliers (left), two requesters (right),

and the potential flows of various commodities among them. The second consumer

makes two different requests. Meanwhile, the second supplier can supply the com-

modities requested by both consumers and has provided two bids accordingly [35].

w

b

p

l

a

i

s

c

a

m

h

t

c

s

t

a

i

i

p

m

a

2

t

d

m

f

C

eliminate many redundant calculations in addition to reducing the

total number of composition entries recorded in the database.

2.3.2. Dynamic resource exchange (DRE)

The Cyclus simulation paradigm allows discrete agents, based

on archetypes about which the kernel has no knowledge, to enter

the simulation at arbitrary times and trade in discrete resources.

These resources are not defined a priori. Therefore, the logic engine

defining resource interaction mechanisms among agents is crucial.

The DRE, described in detail in [35], is that critical logic engine

on which Cyclus simulations are built. Supporting the general Cy-

clus philosophy, facilities are treated as black boxes and a supply-

demand communication framework is defined.

The DRE consists of three steps: supply-demand information

gathering, resource exchange solution, and trade execution. Impor-

tantly, each step is agnostic with respect to the exchange of re-

sources in question, i.e., the same procedure is used for both Ma-

terials and Products.

The information-gathering step begins by polling potential con-

sumers. Agents define both the quantity of a commodity they need

to consume as well as the target isotopics, or quality, by posting

their demand to the market exchange as a series of requests. Users

may optionally parameterize the agent to associate a collection of

demand constraints with each collection of requests. Collections of

requests may be grouped together, denoting mutual requests that

represent demand for some common purpose. For example, a reac-

tor may request UOX and MOX fuel mutually, indicating that either

will satisfy its demand for fuel.

Suppliers then respond to the series of requests with a bid. A

bid supplies a notion of the quantity and quality of a resource to

match a request. Suppliers may add an arbitrary number of con-

straints to accompany bids. For example, an enriched UOX supplier

may be constrained by its current inventory of natural uranium or

its total capacity to provide enrichment in Separative Work Units

(SWUs). It attaches such constraints to its bids.

Any potential resource transfer, i.e., a bid or a request, may be

denoted as exclusive. An exclusive transfer excludes partial fulfil-

ment; it must either be met fully or not at all. This mode sup-

ports concepts such as the trading of individual reactor assemblies.

In combination with the notion of mutual requests, complex in-

stances of supply and demand are enabled.

Finally, requesting facilities, institutions and regions may apply

preferences to each potential request-bid pairing based on the pro-

posed resource transfer. Facilities can apply arbitrary complex logic

to rank the bids that they have received, whether based on the

quantity available in each bid or on the quality of each bid, and the

consequent implications of the physics behavior of that facility. In

addition, an institution can apply a higher preference to a partner

to which it is congenial; similarly, a region may negate any trans-

fers of material which have a higher uranium enrichment than is

allowable.

Given a full definition of supply and demand, represented in

Fig. 5 as a flow graph, the DRE may be solved either optimally

using a mathematical program or approximately by a simulation-

based heuristic [35]. If any trade is denoted as exclusive, e.g., if an

analyst desires an assembly-fidelity model, then either a heuris-

tic must be used or exchanges must be represented as a mixed-

integer linear program (MILP). If no exclusive trades exist, a linear

program (LP) model may be used. The LP formulation in Cyclus is

of the form given by Gidden [35]:

min
x

z = c�x (1)

s.t. Ax ≤ b (2)

xi, j ∈ [0, x̃ j] ∀i ∈ I,∀ j ∈ J (3)
here

I = set of supply nodes

J = set of request nodes

ci, j = unit cost of flow from i to j

xi, j = flow from node i to node j

ak
i, j = coefficient for constraint k between i and j

k
s|r = RHS for constraint k for a given supplier or requester

x̃ j = requested quantity of request node j.

In practice, LPs solve much faster than MILPs. However, both ca-

abilities exist in Cyclus in order to provide users with the desired

evel of fidelity.

Trades between agents are initiated by the Cyclus kernel after

solution to the DRE is found. For each trade, the supplying agent

s notified of its matched request and provides an associated re-

ource to the exchange. All supplied resources are then sent to the

orresponding requesting agents.

In Cyclus, the DRE is executed at each time step. Therefore, if

facility’s request for a resource is not met at a given time step, it

ay offer a request in the following time step. Because agent be-

avior may change arbitrarily, the exchange executed at any given

ime step may be unique in a simulation.

The DRE is a novel simulation concept in the nuclear fuel cy-

le domain. It provides a flexible supply-demand infrastructure,

upporting dynamic flows of resources between agents, even as

hose agents enter and leave the simulation, and even when those

gents are defined by archetypes of arbitrary complexity. Trad-

ng between agents can be affected by both the proposed qual-

ty of a resource and agent relationships through the use of

references. Accordingly, a wide range of possible effects can be

odeled, from capacity-limited fuel supply to international trade

greements.

.4. Simulation support

So that users and developers can build working simulations in

he shortest time possible, the Cyclus ecosystem provides fun-

amental building blocks: basic archetypes and a toolkit of com-

only needed functions. The Cycamore library provides a suite of

undamental Region, Institution, and Facility archetypes, while the

yclus toolkit provides assistance to developers.

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 53

Table 1

The archetypes in Cycamore seek to cover a large range of simple simulation use cases [38]. Facilities added in version 1.3 are marked with ∗ .

Entity Archetype Functionality

Facility EnrichmentFacility This facility enriches uranium at a specified capacity.

Facility Fab∗ This facility fabricates fuel material based on separated streams.

Facility Reactor∗ A reactor model that handles batch refueling, based on pre-determined recipes of compositions. It requests any

number of input fuel types and transmutes them to static compositions upon discharge.

Facility Separations∗ This facility separates an incoming material into specified streams.

Facility Sink This facility is capable of accepting a finite or infinite quantity of some commodity produced in the simulation.

Facility Source This facility generates material of the composition and commodity type specified as input.

Institution ManagerInst The manager institution manages production of commodities among its facilities by building new ones as needed.

Institution DeployInst This institution deploys specific facilities as defined explicitly in the input file.

Region GrowthRegion This region determines whether there is a need to meet a certain capacity (as defined via input) at each time step.

2

v

a

S

w

n

a

p

c

i

t

t

p

f

g

2

i

b

o

t

p

m

2

v

m

e

t

w

(

p

t

B
c

w

C
t

(

f

B
B
d

m

p

c

b

2

u

o

i

m

m

e

a

e

2

n

m

s

s

s

2

c

s

s

d

m

c

c

c

p

c

a

g

t

f

fi

I

.4.1. Cycamore

Cycamore [38], the Cyclus additional module repository, pro-

ides a fundamental set of dynamically loadable libraries providing

gent archetypes for basic simulation functionality within Cyclus.

ince Cyclus relies on external archetypes to represent the agents

ithin a simulation, Cycamore provides the basic archetypes a

ew user needs to get started running simple simulations. These

rchetypes support a minimal set of fuel cycle simulation goals and

rovide, by example, a guide to new developers who would seek to

ontribute their own archetypes outside of Cycamore.

As of version 1.0, Cycamore contains one region archetype, two

nstitution archetypes, and four facility archetypes. Three addi-

ional facilities were added in version 1.3 . Short descriptions of

hese functions can be found in Table 1.

Section 3.2 will demonstrate how the current Cycamore release

rovides basic functionality enabling simple fuel cycle analyses. As

uture contributions are vetted, the capabilities in Cycamore may

row.

.4.2. Toolkit

In addition to the core functionality of the Cyclus kernel, which

s focused on the set of capabilities needed to implement an agent-

ased simulation with DRE, a toolkit is provided to assist devel-

pers and users with related simulation and nuclear engineering

asks. The toolkit is an actively developed part of Cyclus, with a

rimarily forward-looking focus on supporting interesting in situ

etric analysis tools.

.4.2.1. Simulation tools. A series of utility classes are pro-

ided to support demand-constrained agent facility deploy-

ent. For example, symbolic function representations of lin-

ar, exponential, and piecewise functions are supported via

he SymbFunctionFactory class. Such functions are used

ith other toolkit classes to determine commodity demand

e.g., power demand) from user input. Four mix-in classes

rovide the basis for in-simulation deployment determina-

ion: CommodityProducer, CommodityProducerManager,

uilder, BuildingManager. The CommodityProducer
lass provides an interface for querying the prototypes

hich have the capacity to produce a given commodity. The

ommodityProducerManager provides an interface for regis-

ering CommodityProducers and querying the current capacity

supply) of a commodity. The Builder class provides an interface

or querying which prototypes can be built and interacts with the

uildingManager, which orders prototypes to be built. The

uildingManager uses a simple minimum cost algorithm to

etermine how many of each prototype, yi, to build given a de-

and (�), capacities (φi), and costs (ci). Here i indexes I available

rototypes which perform a similar function, and the demand,

apacity and cost carry prototype-specific units which are defined
y the developer.

min

N∑

i=1

ciyi

s.t.

N∑

i=1

φiyi ≥ �

yi ∈ [0,∞) ∀i ∈ I, yi integer

(4)

.4.2.2. Nuclear engineering tools. The Cyclus toolkit provides two

seful interfaces for querying physical parameters of Material
bjects. First, the MatQuery tool provides a basic querying API,

ncluding the atom and mass fractions of nuclides, the number of

oles of a nuclide in a material, etc. (i.e., a Composition), in a

aterial. The Enrichment tool provides an API for determining

nrichment-related parameters of a material, including the SWU

nd natural uranium required to enrich a material provided knowl-

dge of feed, product, and tails assays.

.4.2.3. Toolkit extensions. In addition to those that already exist,

ew tools will emerge from the archetypes developed by the com-

unity. As these tools gain adoption between projects and demon-

trate their utility to the developer community, they will be con-

idered for screening and adoption into the kernel as toolkit exten-

ions. Likely extensions include

• fuel cycle metrics calculators,
• supportive data tables,
• policy models,
• and economic models.

.5. Quality assurance

To garner the trust of a broad user and archetype developer

ommunity, the Cyclus project must implement a strategy to as-

ure the ongoing quality of the software it provides. Multiple

trategies, collectively known as quality assurance (QA), have been

eveloped by the scientific software development community to

itigate structural and algorithmic errors in software. These in-

lude verification and validation (V&V) [39], testing, and others.

Nuclear engineering software quality is often governed by Nu-

lear Quality Assurance - 1 (NQA-1), an American Society of Me-

hanical Engineers (ASME) specification whose latest revision ap-

eared in 2009 [40]. Cyclus has adopted an agile development pro-

ess [41], interpreting NQA-1 in a manner similar to the process

dopted by the Department of Energy (DOE) within Nuclear En-

ineering Advanced Modeling and Simulation (NEAMS) [42] or by

he PyNE toolkit [43].

Validation of simulators like Cyclus, that are intended to give

orecasts of system behavior in uncertain futures, is not well de-

ned as there are no experimental benchmarks upon which to rely.

nstead, code-to-code comparisons with fuel cycle simulators that

54 K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59

C

t

b

q

w

f

T

s

b

2

c

c

t

t

c

o

a

r

c

I

t

t

u

p

p

c

c

t

p

t

t

[

s

s

w

a

a

3

w

d

t

t

c

d

p

f

fi

3

s

l

s

t

C

a

s

use other modeling paradigms are underway as the best approach

to establish confidence that Cyclus produces correct answers. [44]

Verficiation of Cyclus implementation relies on software devel-

opment best practices such as version control, testing, continuous

integration, documentation, and style guidelines to ensure reliabil-

ity and reproducibility. Sections 2.5.1–2.5.3 discuss in greater de-

tail the software development components that comprise the Cy-

clus verification strategy, which allows the simulation kernel and

physics models to be tested explicitly and separately. Each of these

approaches on its own is a valuable addition to QA but it cannot

be the entire answer to the requirements imposed by NQA-1. Taken

together and strictly adhered to, they present a fortress to protect

against poorly designed or otherwise undesirable code.

2.5.1. Version control

Automated version control, provided by git, a well-established

distributed version control tool [45], is at the heart of the QA strat-

egy because it records the full history of any change, along with

metadata such as the author, a timestamp, and an accompanying

message. This makes it possible to identify when changes were in-

troduced, how they are related to other changes, and who made

those changes. If necessary, it also facilitates reversing individual

changes from a long and intricate set of changes. Version control

also enables a code review process descried in Section 2.5.3 below.

2.5.2. Testing

Automated software testing is the first line of defense against

errors in implementation. Testing directly compares the actual re-

sults of running software versus the expected behavior of the soft-

ware. In Cyclus, three categories of tests are defined: unit tests, in-

tegration tests, and regression tests. Before a proposed code change

is allowed into Cyclus, the change must be covered by a test, ei-

ther new or existing, and all tests must pass.

2.5.2.1. Unit tests. Unit tests verify behavior of the smallest code

unit, typically a single function or a class. Cyclus uses the Google

Test framework [46] as a harness for running unit tests. Sufficient

unit tests are required for any proposed change to the Cyclus code

base. Currently, Cyclus implements over 450 unit tests and Cy-

camore implements 85. These cover approximately 65% of their re-

spective code bases, and these numbers are expected to grow over

time.

2.5.2.2. Integration tests. Integration tests combine multiple ele-

ments of the Cyclus interface and test that they work correctly

with each other. In Cyclus and Cycamore, integration tests are

performed by running sample simulations for scenarios verifying

that results match predictions. A set of standard input files are run,

then the output is inspected and compared via Nose [47], a Python

test framework.

2.5.2.3. Regression tests. Regression tests ensure significant unin-

tended changes do not occur over the course of Cyclus devel-

opment. Regression tests are implemented similarly to integration

tests. In this category, however, the comparison is done against the

output of the same input file when run with a previous version of

Cyclus, typically the last released version. In some sense, regres-

sion tests are ‘dumb’ in that they do not care about the contents

of a simulation being correct, only whether or not it changed.

2.5.2.4. Continuous integration. Continuous integration (CI) is the

idea that software should be automatically tested and validated as

it is being developed, rather than as a final stage in a longer de-

velopment cycle. The results of this testing are shown to code re-

viewers prior to reviewing the software changes themselves. The
yclus project uses the CircleCI [48] service for continuous in-

egration. When a code change is submitted for review, CircleCI

uilds a version of the Cyclus source code that includes the re-

uested changes and runs the complete test suite, reporting back

hether or not those steps were successful. If CI was not success-

ul, the code author(s) must first identify and resolve the problems.

hese steps are performed for all incoming code prior to inclu-

ion, so broken code never enters the main software development

ranch.

.5.3. Code review

Automated testing including CI is a necessary but not sufficient

omponent of the Cyclus QA system: it keeps bad code out of Cy-

lus. However, Cyclus will always require human eyes and hands

o let good code in.

The main Cyclus repository is hosted remotely and publicly on

he GitHub website [49], in part because it provides tools that fa-

ilitate a culture of frequent and thorough code review. A number

f policies exist to ensure that a proposed set of changes, known

s a pull request, adhere to the projects QA standards. Every pull

equest must be reviewed and accepted by a member of the Cy-

lus core team that was not involved in authoring the changes.

n addition to reviewing the algorithmic design in the source code,

he reviewer relies on tests to ensure correct behavior, and requires

he authors to adhere to the style guide and provide sufficient doc-

mentation. Only after the QA standards have been met are the

roposed changes merged into the software. This step has been re-

eatedly shown to improve code quality [4].

Once CI is successful, a code reviewer inspects not only the

hanges that are proposed to the software itself, but also the

hanges that have been proposed to tests.

Because of their long term benefit to the maintainability of

he project, documentation and coding style are also reviewed as

art of this process. The API must be documented as required by

he Cyclus QA policy. In Cyclus, this information is aggregated

ogether into static websites with the Doxygen [50] and Sphinx

51] tools, and can be accessed at http://fuelcycle.org. Cyclus also

trictly enforces the use of the Google C++ Style Guide [52] for all

oftware contributions. This means that all developers of Cyclus

rite Cyclus code in the same way. This homogenization may be

hurdle to new developers but ultimately improves code legibility

nd, therefore, robustness [4].

. Demonstration

The success of the Cyclus simulator can be measured in many

ays. The most compelling are early successes of the community-

riven development model and demonstrations of its fundamen-

al simulation capabilities. Promising growth of the Cyclus ecosys-

em at multiple institutions indicates that a fuel cycle simulator

an advance in this community-driven development paradigm. Ad-

itionally, simulation results for both once-through and more com-

lex recycling scenarios demonstrate that Cyclus possesses the

undamental fuel cycle simulation capabilities to contribute to the

eld.

.1. Ecosystem

The Cyclus community-driven software development model

eeks to break the proliferation of specialized simulators. It instead

everages the collective expertise of fuel cycle researchers toward a

ingle, more extensible, tool. Through the targeted contributions of

hose researchers, an ecosystem of capabilities should emerge. The

yclus ‘Ecosystem’ is the collection of tools, calculation libraries,

rchetypes, data, and input files intended for use with the Cyclus

imulator. Members of the ecosystem include:

http://fuelcycle.org

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 55

Table 2

Many tools have been developed outside of the scope of the Cyclus ker-

nel for improved user, developer, and analyst experiences with Cyclus.

Name Description Ref.

Cycic Input control embedded in Cyclist [53]

Cyclist Interactive data exploration environment [54]

Ciclus Continuous integration scripts for Cyclus [55]

Cycstub Skeleton for clean slate module development [56]

Cyan Cyclus analysis tool [57]

Cloudlus Tools for running Cyclus in a cloud environment [58]

t

v

o

p

i

t

b

d

3

k

s

t

c

t

(

3

c

d

i

t

m

c

b

t

[

a

p

p

p

T

t

m

3

t

c

t

t

d

p

a

c

t

t

w

c

m

a

c

w

r

r

a

a

• The archetypes provided in the Cycamore [38] repository;
• The archetypes created by researchers;
• Isotopic composition data;
• Historical facility deployment data;
• The Cyclus (GUI) tool Cyclist;
• Fundamental analysis tools in the Cyclus toolkit;
• Tools for Cyclus optimization, parallelization, and development.

Taken together, these form an ecosystem of capabilities. Over

ime, this ecosystem will grow as archetype developers, kernel de-

elopers, and even users contribute capabilities developed for their

wn needs. Indeed, the long-term vision for the Cyclus framework

redicts an ever-expanding ecosystem of both general and special-

zed capability extensions.

Already, the ecosystem is growing. Early cross-institutional con-

ributions to the ecosystem demonstrate a significant achievement

y the Cyclus framework and provide the basis for a community-

riven development model.

.1.1. Supplementary projects

A number of projects and tools outside of the core simulation

ernel have been developed to improve the scope and the diver-

ity of the capabilities in the Cyclus ecosystem. Table 2 lists the

ools and projects developed under close integration with the Cy-

lus kernel. These tools are used to ease development and simula-

ion design (Cycstub, Cycic, Ciclus), data visualization and analysis

Cyclist, Cyan), and remote execution (Cloudlus).

.1.2. Archetype contributions

It is expected that the most common type of contribution to Cy-

lus will be contributions of new archetypes. Researchers will be

riven to create a new archetype when a need arises, such as to

mprove the fidelity of simulation, or to represent a novel reactor

ype, an innovative reprocessing strategy, or a particular govern-

ental or institutional behavior. The real-world utility of Cyclus

an in part be measured by the breadth and diversity of archetypes

eing developed in this way.

Early progress has been promising. Many archetypes external

o the Cycamore library (Table 3) have been [59,60] or are being

61–63] developed for contribution to the Cyclus ecosystem. These

rchetypes provide the first examples of developer-contributed ca-

abilities. They add to the fundamental Cycamore archetypes by
Table 3

A diverse set of archetypes under development reflect the div

archetypes, contributed outside of the Cyclus core and Cycam

driven development in a fuel cycle simulator.

Name Description

Bright-lite A physics-based reactor arc

Nuclear fuel inventory model A flexible, ORIGEN-based, r

CommodConverter A simple commodity conve

MktDrivenInst An institution that controls

SeparationsMatrix A facility for elemental sep

StreamBlender A facility for fuel fabricatio
roviding physics-based reactors, separations logic, fuel fabrication

rocessing, storage facilities, and expanded institutional paradigms.

he existence and diversity of these contributed archetypes illus-

rate the power and potential of the community-based develop-

ent approach that Cyclus has taken.

.2. Simulations

To illustrate the flexibility of Cyclus, this section will discuss

he creation and results of a range of representative fuel cy-

le simulations. Previous benchmarks between Cyclus and sys-

em dynamics simulators for more complex problems, including

ransition analyses, have been reported elsewhere and Cyclus has

emonstrated satisfactory performance [35,64–66]. The examples

resented here are not the limit of Cyclus ’ capabilities, which

re extended with each new addition to the ecosystem, as dis-

ussed above. Rather, these simulations are designed to illustrate

hat Cyclus matches the capabilities of any recipe-based simula-

or and that variations on a single Cyclus simulations can be run

ith small changes to the input specification. For simplicity of the

urrent demonstration, many simplifying assumptions have been

ade with respect to material compositions, fuel transmutation,

mong others. The three fuel cycles examined are:

1. No Recycle (once through);

2. 1-pass MOX Recycle;

3. Infinite-pass MOX Recycle.

For each of these fuel cycles, a 1,100 month single-reactor Cy-

lus simulation was run in addition to a 10-reactor simulation

ith staggered refueling times. As the number of staggered-cycle

eactors increases the system converges toward continuous mate-

ial flow results. Cyclus flexibility allows this transition to be ex-

mined.

As described in Table 4, the facilities used in these simulations

re:

• Reactor (cycamore::Reactor): This is a reactor model that

requests any number of input fuel types and transmutes them

to static compositions when they are burnt and discharged

from the core. The reactor was configured to model a light wa-

ter reactor with a 3 batch core operating on an 18 month cycle

with a 2 month refuel time. The batches in the core each con-

tain 20 metric tons of heavy metal (MTHM), where heavy met-

als are actinide elements like thorium, uranium, and plutonium.

The reactor was also configured to take in either enriched UOX

fuel or recycled MOX fuel.
• Spent Fuel Fabrication (cycamore::Fab): This facility re-

quests depleted uranium and separated fissile material and

mixes them together into recycled MOX fuel that it offers to

requesters. The two streams are mixed in a ratio in order to

match simple neutronics properties of the target fuel as closely

as possible. The method used is based on a variation “equiva-

lence method” originally developed by Baker and Ross [67]. This

technique has also been used in the COSI fuel cycle simulator
erse needs of researchers at various institutions. These

ore libraries are the first demonstration of community-

Ref.

hetype and fuel fabrication archetype [61]

eactor analysis module [62]

rting storage facility archetype [60]

deployment based on commodity availability [63]

arations of used fuel [59]

n from reprocessed streams [59]

56 K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59

Table 4

Facility configurations for example simulations.

Facility Parameter Value

LWR Type LWR

cycamore::Reactor Batches 3 [batches/cycle]

Batch size 20 [MTHM]

Cycle length 18 [months]

Refueling time 2 [months]

Requests Recycled MOX (1st preference)

Requests Enriched UOX (2nd preference)

Spent Fuel Fabrication Requests Depleted uranium

cycamore::Fab Requests Separated fissile material

Offers Recycled MOX

Separations Requests All spent fuel types

cycamore::Separations Offers Separated fissile material

Efficiency 0.99

Pu separation capacity 6.0E4 [kg/month]

Repository Requests All waste

cycamore::Sink Capacity ∞
UOX Fabrication Offers UOX

cycamore::Source Capacity ∞
DU Source Offers Depleted U

cycamore::Source Capacity ∞

DU Source

Spent Fuel Fab

depleted U
(7e+05 kg)

LWR

MOX fuel
(1e+05 kg)

Enrichment

UOX fuel
(1.06e+06 kg)

Repository

waste
(8e+04 kg)Separations

spent Fuel
(1e+06 kg)

Pu stream
(1.08e+04 kg)

waste
(9.89e+05 kg)

Fig. 6. 1-pass MOX recycle scenario material flows.

p

r

R

−
+

c

c

developed by the French Commissariat a l’Energie Atomique et

aux Energies Alternatives (CEA).
• Separations (cycamore::Separations): This facility takes

in all kinds of spent fuel and separates it into plutonium and

waste streams with some efficiency (0.99 was used for these

simulations). Up to 60,000 kg of Pu can be separated per

month.
• Repository (cycamore::Sink): This is an infinite-capacity fa-

cility that can take in all types of material including separations

waste streams and spent reactor fuel.
• UOX Fabrication (cycamore::Source): This facility provides

enriched UOX fuel as requested. This facility has infinite pro-

duction capacity.
• DU Source (cycamore::Source): This facility provides de-

pleted uranium as requested. This facility has infinite produc-

tion capacity.

To model each of the three fuel cycles, only simple adjustments

to the input file specification were necessary. Specifically, only the

commodity types and trade preferences for each of the facilities

needed to be altered from one simulation to another.

For all cases, the reactor was configured to request recycled

MOX fuel with a higher preference than new UOX fuel. For the No

Recycle case, the Reactor was set to offer all spent fuel as waste.

For the 1-pass recycle case, the Reactor offered spent UOX into

a spent fuel market, but spent MOX is still offered as waste. In the

Infinite-Pass Recycle case, the Reactor offers all burned fuel into

a spent fuel market. The separations facility requests spent fuel

with a higher preference than the repository resulting in prefer-

ential recycle. All these preferences are easy to adjust and Cyclus

dynamically handles supply constraints and non-uniform prefer-

ence resolution. It is notable that separations and recycle fuel fab-

rication capacity are deployed identically in all simulations. In the

once through case, the recycling loop never acquires material, and

so reactors always receive fresh UOX fuel. The DRE ensures every-

thing operates smoothly in all cases.

Cyclus ’ discrete materials make single-pass recycle straight-

forward to implement. The reactors keep track of fuel as discrete

batches. A reactor remembers where it received each batch from.

If a batch was received from the recycled fuel fabrication facility,

it does not offer it to separations and instead offers it as a waste

commodity which is only requested by the repository. The material

flows for the Single-Pass Recycle case are shown in Fig. 6.
Changing the scenario from a 1-pass fuel cycle to an infinite-

ass fuel cycle requires only a one-word change in the input file

egarding the output commodity for the spent MOX fuel of the

eactor:

< fuel >

< incommodity > mox < /incommodity >

< outcommodity > waste < /outcommodity >

< outcommodity > spentfuel < /outcommodity >

< inrecipe > moxfreshfuel < /inrecipe >

< outrecipe > moxspentfuel < /outrecipe >

< /fuel >

This results in the material flows in Fig. 7. A similarly trivial

hange was used to switch from the No Recycle to a 1-pass fuel

ycle. Note that because the reactors always transmute fuel into

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 57

DU Source

Spen t Fue l Fab

d e p l e t e d U
(7 . 1 1 e + 0 5 k g)

LWR

MOX fuel
(1 . 2 e + 0 5 k g)

E n r i c h m e n t

UOX fuel
(1 . 0 4 e + 0 6 k g)

S e p a r a t i o n s

s p e n t f u e l
(1 . 0 8 e + 0 6 k g)

Repos i to ry

w a s t e
(0 k g)

P u s t r e a m
(1 . 3 8 e + 0 4 k g)

w a s t e
(1 . 0 7 e + 0 6 k g)

Fig. 7. Full MOX recycle (multi-pass) fuel cycle material flows.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200

P
u

(m
et

ric
 to

nn
es

)

Time (month)

Plutonium Buildup: 1 Reactor
once through
1-pass recycle
infinite-pass recycle

Fig. 8. System plutonium buildup with one reactor.

fi

t

c

v

u

e

p

f

b

r

t

t

t

d

c

c

f

i

o

s

c

e

l

o

T

l

r

m

4

g

W

t

t

d

b

m

g

 0

 20

 40

 60

 80

 100

 120

 0 200 400 60

P
u

(m
et

ric
 to

nn
es

)

Time (m

Plutonium Buildu
once th
1-pass
infinite

Fig. 9. System plutonium buildup with sta
xed compositions, the error in isotopic compositions is larger for

he Infinite-Pass Recycle case.

Fig. 8 shows the full-system plutonium buildup for No Recy-

le (once through), Single-Pass Recycle, and Infinite-Pass Recycle

ariations of the one-reactor scenario described above. The fig-

re was generated directly from Cyclus output data. After sev-

ral batch cycles (near month 300) in the 1-pass and infinite-

ass cases, enough separated fissile material accumulates in the

uel fabrication facility to generate a full recycled batch. When this

atch is transmuted, more plutonium is burned than created. This

esults in a drop in the total fuel cycle system plutonium inven-

ory. This pattern repeats roughly every 10 cycles (200 months) for

he Single-Pass Recycle case and every 9 cycles (180 months) for

he Infinite-Pass Recycle case. Because the 1-pass recycle scenario

oes not re-recycle material, it takes the fabrication facility 2 cy-

les longer to accumulate a full batch of fissile material.

Because facilities are represented individually and transact dis-

rete materials as discrete events, realistic non-uniform patterns in

acility behavior that affect total system behavior are observed us-

ng Cyclus.

Fig. 9 shows plutonium buildup for the 10-reactor simulations

f the No Recycle, Single-Pass Recycle, and Infinite-Pass Recycle

cenarios. As the number of reactors (with staggered refueling) in-

reases, the behavior of the system approaches a more steady av-

rage reminiscent of continuous material flow models.

The fundamental capabilities of demonstrated in these simu-

ations qualify Cyclus and its ecosystem to model the breadth

f scenario types expected of nuclear fuel cycle simulator tools.

hese examples further show the flexibility provided by the DRE

ogic within the Cyclus framework and provide an example of the

esolution made possible by discrete-facility and discrete-material

odeling in fuel cycle simulation.

. Conclusions

The Cyclus nuclear fuel cycle framework presents a more

eneric and flexible alternative to existing fuel cycle simulators.

here previous nuclear fuel cycle simulators have had limited dis-

ribution, constrained simulation capabilities, and restricted cus-

omizability, Cyclus emphasizes an open strategy for access and

evelopment. This open strategy not only improves accessibility,

ut also enables transparency and community oversight. Further-

ore, the object-oriented ABM simulation paradigm ensures more

eneric simulation capability. It allows Cyclus to address common
0 800 1000 1200
onth)

p: 10 Reactors
rough

 recycle
-pass recycle

ggered refueling for many reactors.

58 K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59
analyses in a more flexible fashion and enables analyses that are

impossible with system dynamics simulators.

Similarly, the fidelity-agnostic, modular Cyclus architecture fa-

cilitates simulations at every level of detail. Simulations relying on

arbitrarily complex isotopic compositions are possible in Cyclus, as

are simulations not employing any physics at all. Physics is intro-

duced through optional system-wide radioactive decay of materials

and through the use of physics-enabled facility libraries. To support

calculation of physical processes in nuclear facilities, the Cycamore

library provides models employing basic physics for core fuel cy-

cle facilities and extension libraries from the community support

more detailed simulations. Indeed, agents of such varying fidelity

can even exist in the same simulation. Researchers no longer need

to reinvent the underlying simulator framework in order to model

a simulation focused on the aspects of the fuel cycle relevant to

their research.

Furthermore, when the capabilities within Cyclus, Cycamore,

and the rest of the ecosystem are insufficient, adding custom func-

tionality is simplified by a modular, plug-in architecture. A clean,

modern API simplifies customization and independent archetype

development so that researchers can create models within their

domain of expertise without modifying the core simulation kernel.

Throughout the Cyclus infrastructure, architecture choices have

sought to enable cross-institutional collaboration and sustainable,

community-driven development. The ecosystem of capabilities, al-

ready growing, may someday reflect the full diversity of use cases

in the nuclear fuel cycle simulation domain.

Acknowledgments

This work has been supported by a number of people. The

authors would like to thank software contributors Zach Welch

and Olzhas Rakhimov. Additionally, the authors are grateful to the

many enthusiastic members of the Cyclus community and our

Nuclear Energy University Programs (NEUP) collaboration partners

at the University of Texas, University of Utah, and University of

Idaho.

Direct support for the Cyclus project has been received from

the Nuclear Regulatory Commission (NRC) Faculty Development

program, the NEUP Research & Development Program, the National

Nuclear Security Administration (NNSA) Consortium for Verifica-

tion Technology, and the University of Wisconsin (UW). In addition

students contributing to Cyclus have received fellowship support

from the Argonne National Laboratory (ANL) Lab Grad program, the

NEUP Fellowship program, the National Science Foundation (NSF)

Graduate Fellowship program, and the Department of Homeland

Security (DHS) Nuclear Forensics Graduate Fellowship program.

References

[1] Piet SJ, Dixon BW, Jacobson JJ, Matthern GE, Shropshire DE. Dynamic sim-

ulations of advanced fuel cycles. Nuclear Technol 2011;173(3):227–38. URL
http://epubs.ans.org/?a=11658.

[2] Huff K, Dixon B. Next generation fuel cycle simulator functions and require-
ments document. Idaho National Laboratory; 2010. Technical Report fcrd-sysa-

2010-000110. Jul.

[3] Macal CM. To agent-based simulation from system dynamics. In: Proceedings
of the 2010 Winter Simulation Conference (WSC), IEEE; 2010. p. 371–82. URL

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5679148.
[4] Cohen J. Modern code review, making software: what really works, and

why we believe it. 2010. 329–336. http://books.google.com/books?hl=en&lr=
&id=DxuGi5h2-HEC&oi=fnd&pg=PA329&dq=cohen+modern+code+review&ots=

0VrtsgOdqP&sig=-XrFj4mAA2MB-20qZXOFx8Felzo.
[5] Fagan M. Design and code inspections to reduce errors in program develop-

ment. Software pioneers. Springer; 2002. p. 575–607. http://link.springer.com/

chapter/10.1007/978-3-642-59412-0_35
[6] Donoho DL, Maleki A, Rahman IU, Shahram M, Stodden V. Reproducible re-

search in computational harmonic analysis. Comput Sci Eng 2009;11(1):8–
18. doi:10.1109/MCSE.2009.15.00110. URL http://scitation.aip.org/content/aip/

journal/cise/11/1/10.1109/MCSE.2009.15
[7] Ince DC, Hatton L, Graham-Cumming J. The case for open computer pro-
grams. Nature 2012;482(7386):485–8. doi:10.1038/nature10836.00142. http://

www.nature.com/doifinder/10.1038/nature10836
[8] Stodden V.. The scientific method in practice: reproducibility in the computa-

tional sciences. SSRN Electronic J00037doi: 10.2139/ssrn.1550193. http://www.
ssrn.com/abstract=1550193.

[9] Wicherts JM, Bakker M, Molenaar D. Willingness to share research data is re-
lated to the strength of the evidence and the quality of reporting of statistical

results. PLoS ONE 2011;6(11):e26828. doi:10.1371/journal.pone.0026828. URL

http://dx.doi.org/10.1371/journal.pone.0026828
[10] Petre M., Wilson G.. Code Review For and By Scientists. arXiv:1407.5648

[cs]00000 arXiv:1407.5648. http://arxiv.org/abs/1407.5648.
[11] Flicker M, Schneider EA, Campbell P. Evaluation criteria for analyses of nuclear

fuel cycles. Transactions of the American Nuclear Society, Vol 111 of Fuel Cycle
Options Analysis – III. La Grange Park, IL 60526, United States, Anaheim, CA,

United States: American Nuclear Society; 2014. p. 233–6. http://epubs.ans.org/

?a=36342
[12] Poinssot C, Bourg S, Ouvrier N, Combernoux N, Rostaing C, Vargas-

Gonzalez M, et al. Assessment of the environmental footprint of nuclear
energy systems. Comparison Between Closed Open Fuel Cycles, Energy 69

2014:199–211. doi:10.1016/j.energy.2014.02.069. URL http://www.sciencedirect.
com/science/article/pii/S0360544214002035

[13] Guerin L, Kazimi M. Impact of alternative nuclear fuel cycle options on infras-

tructure and fuel requirements, actinide and waste inventories, and economics.
Technical Report MIT-NFC-TR-111. Massachusetts Institute of Technology, Cam-

bridge, MA, United States; Sep. 2009.
[14] Jacobson J, Yacout A, Matthern G, Piet S, Shropshire D, Jeffers R, et al. VER-

IFIABLE FUEL CYCLE SIMULATION MODEL (VISION): A TOOL FOR ANALYZING
NUCLEAR FUEL CYCLE FUTURES. Nuclear Technology 2010;172:157–78.

[15] Yacout AM, Jacobson JJ, Matthern GE, Piet SJ, Moisseytsev A. Modeling

the nuclear fuel cycle. In: Proceedings of the 23rd International Confer-
ence of the System Dynamics Society, Boston; 2005. http://www.inl.gov/

technicalpublications/Documents/3169906.pdf
[16] Schneider EA, Bathke CG, James MR. NFCSim: a dynamic fuel burnup and fuel

cycle simulation tool. Nuclear Technol. 2005;151(1):35–50.
[17] Allan C. International atomic energy agency, international project on innova-

tive nuclear reactors and fuel cycles. In: Guidance for the application of an

assessment methodology for Innovative Nuclear Energy Systems INPRO Man-
ual: overview of the Methodology, no. IAEA-TECDOC-1575 in IAEA-TECDOC,

International Atomic Energy Agency, Vienna; rev.1 edition; 2008. URL http:
//www-pub.iaea.org/MTCD/Publications/PDF/TE_1575_web.pdf

[18] Boucher L, Grouiller JP. “COSI” : a simulation software for a pool of reac-
tors and fuel cycle plants. In: Fuel Cycle and High Level Waste Management;

2005.Beijing, China

[19] Boucher L, Grouiller JP. “COSI”: the complete renewal of the simulation soft-
ware for the fuel cycle analysis. Fuel Cycle and High Level Waste Management,

1. New York, NY, USA, Miami, FL, United states: ASME; 2006.
[20] Meyer M, Boucher L. New developments on COSI 6, the simulation software

for fuel cycle analysis. In: Proceedings of GLobal 2009; 2009. Paris, France.
[21] Coquelet-Pascal C, Meyer M, Girieud R, Eschbach R, Chabert C, Garzenne C,

et al. Comparison of different scenarios for the deployment of fast reactors
in France - results obtained with COSI. In: Proceedings of GLobal 2011; 2011.

Makuhari, Japan.

[22] Worrall A, Gregg R. Scenario analyses of future UK fuel cycle options. J Nuclear
Sci Technol 2007;44(3):249–56. doi:10.1080/18811248.2007.9711279. URL http:

//www.tandfonline.com/doi/abs/10.1080/18811248.2007.9711279
[23] Durpel LVD, Yacout A, Wade D, Taiwo T, Lauferts U. DANESS v4.2: overview

of capabilities and developments. In: Proceedings of Global 2009; 2009.Paris,
France

[24] Guerin L, Feng B, Hejzlar P, Forget B, Kazimi MS, Durpel LVD, et al. A bench-

mark study of computer codes for system analysis of the nuclear fuel cycle.
Massachusetts Institute of Technology. Center for Advanced Nuclear Energy

Systems. Nuclear Fuel Cycle Program, electric Power Research Institute; Apr.
2009. Technical report. URL http://dspace.mit.edu/handle/1721.1/75245

[25] Andrianova EA, Davidenko VD, Tsibul’skii VF. Desae program for systems stud-
ies of long-term growth of nuclear power. Atomic energy 2008;105(6):385–

90. URL http://www.springerlink.com/index/l581v3n5111475u8.pdf

[26] McCarthy KA., Dixon B., Choi Y.-J., Boucher L., Ono K., Alvarez-Velarde F.,
et al. Benchmark study on nuclear fuel cycle transition scenarios-analysis

codes. URL http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/44/
089/44089401.pdf.

[27] Dunzik-Gougar ML, Juchau CA, Pasamehmetoglu K, Wilson PPH, Oliver KM,
Turinsky PJ, et al. Global evaluation of nuclear infrastructure utilization sce-

narios (GENIUS) Proceedings of GLOBAL 2007: Advanced Nuclear Fuel Cycles

and Systems, September 9, 2007 - September 13, 2007, GLOBAL 2007: Ad-
vanced Nuclear Fuel Cycles and Systems. United states: American Nuclear So-

ciety, Boise, ID; 2007. p. 1604–11.
[28] Jain R, Wilson PPH. Transitioning to global optimization in fuel cycle system

study tools. Proceedings of 2006 Winter Meeting of the American Nuclear
Society, Nov 12 - 16 2006, Vol 9 of Transactions of the American Nuclear Soci-

ety. Albuquerque, NM, United states: American Nuclear Society; 2006. p. 162–

1-63.
[29] Oliver KM, Wilson PP, Reveillere A, Ahn TW, Dunn K, Huff KD, et al. Study-

ing international fuel cycle robustness with the GENIUSv2 discrete facili-
ties/materials fuel cycle systems analysis tool. In: Proceedings of GLOBAL 2009,

GLOBAL 2009: Advanced Nuclear Fuel Cycles and Systems; 2009. Paris, France.

http://dx.doi.org/10.13039/100006999
http://dx.doi.org/10.13039/100007130
http://dx.doi.org/10.13039/100007747
http://dx.doi.org/10.13039/100005187
http://dx.doi.org/10.13039/100006999
http://dx.doi.org/10.13039/100006168
http://dx.doi.org/10.13039/100006224
http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100000180
http://epubs.ans.org/?a=11658
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0002
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5679148
http://books.google.com/books?hl=en&lr=&id=DxuGi5h2-HEC&oi=fnd&pg=PA329&dq=cohen+modern+code+review&ots=0VrtsgOdqP&sig=-XrFj4mAA2MB-20qZXOFx8Felzo
http://link.springer.com/chapter/10.1007/978-3-642-59412-0_35
http://dx.doi.org/10.1109/MCSE.2009.15
http://scitation.aip.org/content/aip/journal/cise/11/1/10.1109/MCSE.2009.15
http://dx.doi.org/10.1038/nature10836
http://www.nature.com/doifinder/10.1038/nature10836
http://www.ssrn.com/abstract=1550193
http://dx.doi.org/10.1371/journal.pone.0026828
http://dx.doi.org/10.1371/journal.pone.0026828
http://arxiv.org/abs/1407.5648
http://arxiv.org/abs/1407.5648
http://epubs.ans.org/?a=36342
http://dx.doi.org/10.1016/j.energy.2014.02.069
http://www.sciencedirect.com/science/article/pii/S0360544214002035
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0011
http://www.inl.gov/technicalpublications/Documents/3169906.pdf
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0013
http://www-pub.iaea.org/MTCD/Publications/PDF/TE_1575_web.pdf
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0018
http://dx.doi.org/10.1080/18811248.2007.9711279
http://www.tandfonline.com/doi/abs/10.1080/18811248.2007.9711279
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0020
http://dspace.mit.edu/handle/1721.1/75245
http://www.springerlink.com/index/l581v3n5111475u8.pdf
http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/44/089/44089401.pdf
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0023
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0024
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0025

K.D. Huff et al. / Advances in Engineering Software 94 (2016) 46–59 59

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

30] Huff KD, Oliver KM, Wilson PP, Ahn TW, Dunn K, Elmore R. GENIUSv2 dis-
crete facilities/materials modeling of international fuel cycle robustness. In:

Proceedings of Transactions of the American Nuclear Society, Vol. 101 of Nu-
clear Fuel Cycle Codes and Applications, American Nuclear Society, Washington

D.C.; 2009. p. 239–40. United States.
[31] Juchau CA, Dunzik-Gougar ML, Jacobson JJ. Modeling the nuclear fuel cycle.

Nuclear Technol. 2010;171(2):136–41. URL http://epubs.ans.org/?a=10778
32] Grasso G, Monti S, Sumini M. NEA-WPFC/FCTS benchmark for fuel cycle

scenarios study with COSI6. Technical Report, Report RSE/2009/136; 2009. URL

http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/
nucleare-fissione/studi-accordi/rse136.pdf

[33] Boucher L. Benchmark study on nuclear fuel cycle transition scenarios anal-
ysis codes. 16, OECD, Nuclear Energy Agency; Jun. 2012. Technical Report

nea/nsc/wpfc/doc(2012).
34] Gidden M. Cyclopts 0.0.10. Figshare http://dx.doi.org/10.6084/m9.figshare.

1288959. URL http://figshare.com/articles/cyclopts/1288959. doi: http://dx.doi.

org/10.6084/m9.figshare.1288959
[35] Gidden MJ. An agent-based modeling framework and application for the

generic nuclear fuel cycle, Madison, WI, United States: University of Wiscon-
sin; Mar. 2015. Ph.d. thesis.

36] Carlsen RW., Gidden M., Huff K., Opotowsky AC., Rakhimov O., Scopatz AM.,
et al. Cyclus v1.0.0. Figshare http://dx.doi.org/10.6084/m9.figshare.1041745.

doi: http://dx.doi.org/10.6084/m9.figshare.1041745. URL http://figshare.com/

articles/Cyclus_v1_0_0/1041745.
[37] Jacobson JJ, Jeffers RF, Matthern GE, Piet SJ, Baker BA, Grimm J. VISION user

guide-VISION (verifiable fuel cycle simulation) model. Idaho National Lab-
oratory (INL); 2009. Tech. rep.. URL http://www.inl.gov/technicalpublications/

Documents/4363869.pdf
38] Carlsen RW., Gidden M., Huff K., Opotowsky AC., Rakhimov O., Scopatz

AM., et al. Cycamore v1.0.0. Figshare http://figshare.com/articles/Cycamore_

v1_0_0/1041829. http://dx.doi.org/http://figshare.com/articles/Cycamore_v1_0_
0/1041829URL http://figshare.com/articles/Cycamore_v1_0_0/1041829.

39] Boehm B. Software risk management. Springer; 1989.
40] ASME. NQA-1a-2009, addenda to ASME NQA-1-2008, quality assurance re-

quirements for nuclear facility applications. no. NQA-1a-2009 in Nuclear Qual-
ity Assurance. New York, NY: American Society of Mechanical Engineers; 2009.

[41] Larman C. Agile and iterative development: a mnager’s guide. Addison-Wesley

Professional; 2004.
42] NEAMS. Energy advanced modeling and simulation (neams) software verifica-

tion and validation (V&V) plan requirements. U.S. Deptartment of Energy, Of-
fice of Nuclear Energy; Jul. 2013. Tech. rep.. URL http://www.energy.gov/sites/

prod/files/2013/09/f2/NEAMS
43] Biondo E, Scopatz A, Gidden M, Slaybaugh R, Bates PP, Wilson C. Quality assur-

ance within the PyNE open source toolkit. In: American Nuclear Society 2014

Winter Meeting, ANS; 2014.
44] Huff KD, Fratoni M, Greenberg H. Extensions to the cyclus ecosystem in sup-

port of market-driven transition capability. Transactions of the American Nu-
clear Society. Anaheim, CA, United States: American Nuclear Society; 2014.

45] Software Freedom Conservancy. Git, software freedom conservancy. 2014. URL
http://git-scm.com.

46] Inc G.. googletest - Google C++ testing framework, technical report, Google
Inc.2008. URL https://code.google.com/p/googletest/.

[47] Pellerin J.. Nose is nicer testing for python, technical report, nose. 2007. URL

https://nose.readthedocs.org/en/latest/.
48] Biggar P. CircleCI. 2015.
49] Dabbish L, Stuart C, Tsay J, Herbsleb J. Social coding in GitHub: transparency
and collaboration in an open software repository. Proceedings of the ACM 2012

conference on Computer Supported Cooperative Work. ACM; 2012. p. 1277–86.
50] van Heesch D.. Doxygen: Source code documentation generator tool, URL: http:

//www.doxygen.org.
[51] Brandl G.. Sphinx Documentation. URL http://sphinx-doc.org/sphinx.pdf.

52] Weinberger B., Silverstein C., Eitzmann G., Mentovai M., Landray T. Google C++
style guide, http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml.

53] Flanagan R, Schneider EA. Input visualization for the cyclus nuclear fuel cycle

simulator: cyclus input control. In: Proceedings of GLOBAL 2013, Salt Lake City,
UT, United States; 2013.

54] Livnat Y., Gur H., Potter K., Flanagan R.. Cyclist. github.com/SCI-Utah/cnome
(Oct. 2014). URL github.com/SCI-Utah/cnome.

55] Scopatz A., Welch Z., Gidden M.. Ciclus. https://github.com/cyclus/ciclus (Oct.
2014). URL https://github.com/cyclus/ciclus.

56] Carlsen R.W., Gidden M., Huff K., Opotowsky AC., Rakhimov O., Scopatz

AM., et al. Cycstub. https://github.com/cyclus/cycstub (Jun. 2014). URL https:
//github.com/cyclus/cycstub.

[57] Carlsen RW.. Cyan. Figshare http://dx.doi.org/10.6084/m9.figshare.1041836. doi:
http://dx.doi.org/10.6084/m9.figshare.1041836. URL http://dx.doi.figshare.com/

articles/CyAn_Cyclus_Analysis_Tools/1041836.
58] Carlsen RW.. Cloudlus. https://github.com/rwcarlsen/cloudlus (Oct. 2014). URL

https://github.com/rwcarlsen/cloudlus.

59] Huff KD.. Streamblender. Figshare http://dx.doi.org/10.6084/m9.figshare.
1134648. doi:http://dx.doi.org/10.6084/m9.figshare.1134648. URL http:

//figshare.com/articles/StreamBlender/1134648.
60] Huff K.D.. CommodConverter, Figshare http://dx.doi.org/10.6084/m9.

figshare.1134647. doi: http://dx.doi.org/10.6084/m9.figshare.1134647. URL
http://figshare.com/articles/CommodConverter/1134647.

[61] Flanagan R.. Bright-lite, https://github.com/bright-dev/bright-lite (Oct. 2014).

URL https://github.com/bright-dev/bright-lite.
62] Skutnik S.. Development of an ORIGEN-based reactor analysis module for

cyclus. Figshare http://dx.doi.org/10.6084/m9.figshare.1291144. doi:http:
//dx.doi.org/10.6084/m9.figshare.1291144. URL http://figshare.com/articles/

Development_of_an_ORIGEN_based_Reactor_Analysis_Module_for_Cyclus/
1291144.

63] Huff KD. MktDrivenInst, Figshare http://dx.doi.org/10.6084/m9.figshare.

1134650. doi:http://dx.doi.org/10.6084/m9.figshare.1134650. URL http:
//figshare.com/articles/MktDrivenInst/1134650.

64] Djokic D, Scopatz AM, Greenberg HR, Huff KD, Nibbelink RP, Fratoni M. The ap-
plication of CYCLUS to fuel cycle transition analysis. In: Proceedings of Global

2015, LLNL-CONF-669315, Paris, France; 2015. p. 5061.
65] Scopatz AM.. Non-judgemental Dynamic Fuel Cycle Benchmarking,

arXiv:1511.09095 [physics]ArXiv:1511.09095. URL http://arxiv.org/abs/1511.

09095.
66] Gidden M, Wilson P, Huff K, Carlsen R. Once-through benchmarks with C

YCLUS, a modular, open-source fuel cycle simulator. In: Proceedings of the
2012 ANS Winter Conference, San Diego, CA; 2012.

[67] Baker A, Ross R. Comparison of the Value of plutonium and uranium isotopes
in fast reactors. In: Proceedings of Conference on Breeding, Economics and

Safety in Large Fast Breeder Reactors, ANL-6972; 1963. p. 7–10.

http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0026
http://epubs.ans.org/?a=10778
http://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/nucleare-fissione/studi-accordi/rse136.pdf
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0029
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0029
http://dx.doi.org/10.6084/m9.figshare.1288959
http://figshare.com/articles/cyclopts/1288959
http://dx.doi.org/10.6084/m9.figshare.1288959
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0030
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0030
http://dx.doi.org/10.6084/m9.figshare.1041745
http://dx.doi.org/10.6084/m9.figshare.1041745
http://figshare.com/articles/Cyclus_v1_0_0/1041745
http://www.inl.gov/technicalpublications/Documents/4363869.pdf
http://figshare.com/articles/Cycamore_v1_0_0/1041829
http://dx.doi.org/http://figshare.com/articles/Cycamore_v1_0_0/1041829
http://figshare.com/articles/Cycamore_v1_0_0/1041829
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0032
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0033
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0034
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0034
http://www.energy.gov/sites/prod/files/2013/09/f2/NEAMS
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0036
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0037
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0037
http://git-scm.com
https://code.google.com/p/googletest/
https://nose.readthedocs.org/en/latest/
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0038
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0038
http://www.doxygen.org
http://sphinx-doc.org/sphinx.pdf
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0039
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0039
https://github.com/cyclus/ciclus
https://github.com/cyclus/ciclus
https://github.com/cyclus/cycstub
https://github.com/cyclus/cycstub
http://dx.doi.org/10.6084/m9.figshare.1041836
http://dx.doi.org/10.6084/m9.figshare.1041836
http://dx.doi.figshare.com/articles/CyAn_Cyclus_Analysis_Tools/1041836
https://github.com/rwcarlsen/cloudlus
https://github.com/rwcarlsen/cloudlus
http://dx.doi.org/10.6084/m9.figshare.1134648
http://dx.doi.org/10.6084/m9.figshare.1134648
http://figshare.com/articles/StreamBlender/1134648
http://dx.doi.org/10.6084/m9.figshare.1134647
http://dx.doi.org/10.6084/m9.figshare.1134647
http://figshare.com/articles/CommodConverter/1134647
https://github.com/bright-dev/bright-lite
https://github.com/bright-dev/bright-lite
http://dx.doi.org/10.6084/m9.figshare.1291144
http://dx.doi.org/10.6084/m9.figshare.1291144
http://figshare.com/articles/Development_of_an_ORIGEN_based_Reactor_Analysis_Module_for_Cyclus/1291144
http://dx.doi.org/10.6084/m9.figshare.1134650
http://dx.doi.org/10.6084/m9.figshare.1134650
http://figshare.com/articles/MktDrivenInst/1134650
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0040
http://arxiv.org/abs/1511.09095
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0041
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0042
http://refhub.elsevier.com/S0965-9978(16)30022-9/sbref0042

	Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.2.1 Open access and development practices
	1.2.2 Modularity and extensibility
	1.2.3 Discrete facilities and materials

	2 Methodology and implementation
	2.1 Modular software architecture
	2.1.1 Cluster-ready software
	2.1.2 Dynamically loadable libraries

	2.2 Agent-based paradigm
	2.2.1 Agent interchangeability
	2.2.2 Regions, institutions, and facilities

	2.3 Discrete objects
	2.3.1 Resources and materials
	2.3.2 Dynamic resource exchange (DRE)

	2.4 Simulation support
	2.4.1 Cycamore
	2.4.2 Toolkit

	2.5 Quality assurance
	2.5.1 Version control
	2.5.2 Testing
	2.5.3 Code review

	3 Demonstration
	3.1 Ecosystem
	3.1.1 Supplementary projects
	3.1.2 Archetype contributions

	3.2 Simulations

	4 Conclusions
	 Acknowledgments
	 References

