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Nuclear Fission Chain Reaction
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Why Molten Salt Reactors?

Main advantages of liquid-fueled Molten Salt
Reactors (MSRs) [1]

1 High coolant temperature (600-750◦C).
2 Various fuels can be used (235U, 233U,

Thorium, U/Pu).
3 Increased inherent safety.
4 High fuel utilization ⇒ less nuclear

waste generated.
5 Online reprocessing and refueling.
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Challenges in simulation MSR
1 Contemporary burnup codes cannot treat fuel movement.
2 Neutron precursor location is hard to estimate.
3 Operational and safety parameters change during reactor operation.
4 Power generation strongly depends on fuel temperature and vica versa.

Figure 1: Challenges in simulating MSR (Courtesy of Manuele Aufiero,2012).
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Research objectives

Goal #1: Tool for online reprocessing depletion simulation (SaltProc)[2]
1 Create high-fidelity full-core neutronics model of MSBR.
2 Develop online reprocessing simulation code, SaltProc, which expands the

neutronics code capability for simulation liquid-fueled MSR operation.
3 Analyse Molten Salt Breeder Reactor (MSBR) neutronics and fuel cycle

performance.

Goal #2: Tool for multiphysics simulation of MSR (Moltres)[3]
1 Demonstrate steady-state coupling of neutron fluxes, precursors, and

thermal-hydraulics.
2 Implement advective movement of delayed neutron precursors.
3 Demonstrate capabilities with 2D axisymmetric and 3D mesh.
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Moderator element geometry (Zone I)

Figure 2: Molten Salt Breeder Reactor Zone I unit cell geometry from the reference [4]
(left) and SERPENT 2 (right). 12 / 37
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Full-core SERPENT model of MSBR

Figure 3: Plan (left) and elevation (right) view of MSBR model.
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Core Zone II

Figure 4: Detailed plan view of graphite reflector and moderator elements.
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Figure 5: Flow chart for the SaltProc.

SaltProc capabilities
• Remove specific isotopes from the core

with specific parameters (reprocessing
interval, mass rate, removal efficiency)

• Add specific isotopes into the core
• Maintain constant number density of

specific isotope in the core
• Store stream vectors in an HDF5

database for further analysis or plots
• Generic geometry: an infinite medium,

a unit cell, a multi-zone simplified
assembly, or a full-core
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MOOSE Framework

Figure 6: Multi-physics Object-Oriented
Simulation Environment (MOOSE).

• Fully-coupled, fully-implicit multiphysics
solver

• MOOSE interfaces with libMesh to
discretize simulation volume into finite
elements

• Residuals and Jacobians handed off to
PetSc which handles solution of
resulting non-linear system of algebraic
equations

• Automatically parallel (largest runs
>100,000 CPU cores!)

• Built-in mesh adaptivity
• Intuitive parallel multiscale solves
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Effective multiplication factor for full-core MSBR model

Figure 7: keff during a 20 years depletion simulation.

• Strong absorbers
(233Th,234U) accumulating in
the core

• Fissile materials other than
233U are bred into the core
(235U, 239Pu)

• The multiplication factor
stabilizes after approximately
6 years
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Power and breeding distribution

Figure 8: Normalized power density Figure 9: 232Th neutron capture reaction rate
normalized by total flux
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232Th refill rate

Figure 10: 232Th feed rate over 20 years of MSBR
operation

• Fluctuation due to
batch-wise removal of strong
absorbers

• Feed rate varies due to
neutron energy spectrum
evolution

• 232Th consumption is 100
g/GWhe
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Multiphysics simulation results (2D)

Figure 11: Fast (φ1) and thermal (φ2) neutron flux obtained using Moltres [3]. 21 / 37
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Multiphysics simulation results (2D) (2)

Figure 12: Temperature in channel obtained using Moltres [3]. 22 / 37
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Multiphysics simulation results (3D)

Figure 13: Cuboidal MSR steady-state temperature and fast neutron flux [5].
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Conclusions

SaltProc
• New tool SaltProc was developed to simulate fuel depletion in the MSR.
• SaltProc was tested for MSBR conceptial design, equilibrium fuel salt

composition was found and verified against recent studies.
• Average 232Th refill rate throughout 20 years of operation is approximately

2.39 kg/day or 100 g/GWhe .

Moltres
• New tool Moltres was developed for modeling coupled physics in novel

molten salt reactors.
• 2D-axisymmetric and 3D multiphysics models are presented.
• Moltres demonstrated strong parallel scaling (up to 384 physical cores) but

further optimization required.
• Over 55,000 node-hours were consumed on Blue Waters to perform this

research.
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Future research

Future research effort
1 Equilibrium state search for Transatomic MSR (>30,000 node-hours).
2 Fuel cycle performance analysis for load-following regime

(>40,000 node-hours).
3 Light Water Reactor (LWR) fuel transmutation in MSR viability (>30,000

node-hours).

4 Start exploring transients in Moltres, e.g. explore responses to reactivity
insertion or gaseuos poisons removal (>70,000 node-hours).
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Processing options for MSR fuels
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BUBBLE GENERATOR AND GAS SEPARATOR for MSBR
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Chemical processing facility for MSBR
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Multiplication factor dynamics during Rb, Sr, Cs, Ba removal (3435days)
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MSBR neutron energy spectrum for different regions
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Fissile isotopes producing in MSBR core
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MSBR plain view
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Generation IV Reactors

Goals for Generation IV Nuclear Energy Systems
1 Sustainability
2 Economics
3 Safety and Reliability
4 Proliferation Resistance and Physical Protection

Figure 14: A Technology Roadmap for Gen IV Nuclear Energy Systems.
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