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Why Molten Salt Reactors?

Caontrol
Rods

Coolant Sak

® High coolant temperature (600-750°C).
235y 233y

@® Various fuels can be used (
Thorium, U/Pu).

© Increased inherent safety.

@ High fuel utilization = less nuclear
waste generated.

Chamical

® Online reprocessing and refueling.

Emergency Dump Tanks
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Challenges in simulation MSR

® Contemporary burnup codes cannot treat fuel movement.

® Neutron precursor location is hard to estimate.

® Operational and safety parameters change during reactor operation.

@ Power generation strongly depends on fuel temperature and vica versa.
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Figure 1: Challenges in simulating MSR (Courtesy of Manuele Aufiero,2012).
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Research objectives

@ Create high-fidelity full-core neutronics model of MSBR.

® Develop online reprocessing simulation code, SaltProc, which expands the
neutronics code capability for simulation liquid-fueled MSR operation.

@® Analyse Molten Salt Breeder Reactor (MSBR) neutronics and fuel cycle
performance.

@ Demonstrate steady-state coupling of neutron fluxes, precursors, and
thermal-hydraulics.

® Implement advective movement of delayed neutron precursors.

©® Demonstrate capabilities with 2D axisymmetric and 3D mesh.
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Figure 2: Molten Salt Breeder Reactor Zone | unit cell geometry from the reference [4]
(left) and SERPENT 2 (right). .
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Full-core SERPENT model of MSBR I

Figure 3: Plan (left) and elevation (right) view of MSBR model.
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Result:
Conclusic

Online reprocessing method

[ Nuclide list F% User input }
JIC SaltProc capabiities
Initial fuel composition —>|

Perform setup
Removal and refill parameters

calculations

Build SERPENT input|
Run SERPENT

Read depleted nuclides

Perform nuclide
separations and feeds

Generate new
composition file

e Remove specific isotopes from the core
with specific parameters (reprocessing
interval, mass rate, removal efficiency)

SERPENT template input file

e Add specific isotopes into the core

SERPENT composition file . . .
e Maintain constant number density of

specific isotope in the core

e Store stream vectors in an HDF5
database for further analysis or plots

Analyzed
output and
plots

e Generic geometry: an infinite medium,
a unit cell, a multi-zone simplified
assembly, or a full-core

Figure 5: Flow chart for the SaltProc.
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MOOSE Framework

[ Qﬁq/+m(r)\1/(r,ﬁ):i(gﬁ(r)(pers(ar] e Fully-coupled, fully-implicit multiphysics
e 1 7 solver
% e MOOSE interfaces with libMesh to
g | M@OSE discretize simulation volume into finite
- elements
Q‘ ) /V e Residuals and Jacobians handed off to
</ PetSc which handles solution of

resulting non-linear system of algebraic
equations

e Automatically parallel (largest runs
>100,000 CPU cores!)

e Built-in mesh adaptivity

Figure 6: Multi-physics Object-Oriented e Intuitive parallel multiscale solves

Simulation Environment (MOOSE).
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Effective multiplication factor for full-core MSBR model
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Figure 7: keg during a 20 years depletion simulation.
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Power and breeding distribution
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Figure 8: Normalized power density Figure 9: 22Th neutron capture reaction rate

normalized by total flux
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2327} refill rate
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Figure 10: 232Th feed rate over 20 years of MSBR
operation
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Multiphysics simulation results (2D)
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Figure 11: Fast (¢1) and thermal (¢2) neutron flux obtained using Moltres [3].
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Multiphysics simulation results (2D) (2)
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Figure 12: Temperature in channel obtained using Moltres [3]. a7
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Multiphysics simulation results (3D) I
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Figure 13: Cuboidal MSR steady-state temperature and fast neutron flux [5].
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Conclusions

e New tool SaltProc was developed to simulate fuel depletion in the MSR.

e SaltProc was tested for MSBR conceptial design, equilibrium fuel salt
composition was found and verified against recent studies.

e Average 32Th refill rate throughout 20 years of operation is approximately
2.39 kg/day or 100 g/GWhe,.

e New tool Moltres was developed for modeling coupled physics in novel
molten salt reactors.

e 2D-axisymmetric and 3D multiphysics models are presented.

e Moltres demonstrated strong parallel scaling (up to 384 physical cores) but
further optimization required.

e Over 55,000 node-hours were consumed on Blue Waters to perform this
research.
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Future research

® Equilibrium state search for Transatomic MSR (>30,000 node-hours).

® Fuel cycle performance analysis for load-following regime
(>40,000 node-hours).

©® Light Water Reactor (LWR) fuel transmutation in MSR viability (>30,000
node-hours).

@ Start exploring transients in Moltres, e.g. explore responses to reactivity
insertion or gaseuos poisons removal (>70,000 node-hours).
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[H Elements that escape from fuel salt
[O] Elements that can be removed without processing
[ Elements that can be removed only by chemical processing of fuel salt
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Chemical processing facility for MSBR
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MSBR neutron energy spectrum for different regions
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Fissile isotopes producing in MSBR core
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MSBR plain view
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Generation |V Reactors

@ Sustainability

® Economics

© Safety and Reliability

@ Proliferation Resistance and Physical Protection
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