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Why Molten Salt Reactors?

® High average coolant temperature (600-750°C) = high thermal efficiency,
hydrogen production, cheap heat energy for chemical industry.

® May operate with epithermal or fast neutron spectrums.
© Various fuels can be used (***U, 23U, Thorium, U/Pu).
@ Liquid fuel has strong negative temperature feedback.
@ Liquid fuel drains into tanks in emergency.

@ High fuel utilization = less nuclear waste generated.

@ Online reprocessing and refueling.

@ Breed fissile 22U from #*2Th (breeding ratio 1.06).

® U, >°U, or Z°Pu for the initial fissile loading.

® Thorium cycle limits plutonium and minor actinides.

© Could transmute Light Water Reactor (LWR) spent fuel.
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Molten Salt Reactor Experiment vs Molten Salt Breeder Reactor

@ 8 MWy, @ 2.25GWy,, 1GW,
® Fuel salt ® Fuel salt
o TLiF-BeF2-ZrF4-UF, o TLiF-BeF,-ThF4-233UF,
o TLiF-BeF,-ZrF4-UF4-PuF; o TLiF-BeF2-ThF4-233UF4-23°PuFs
® First use of 23U and mixed U/Pu © Breeding ratio 1.06
@ Single region core 0 Single fluid /two-region core design
@ Operated: 1965-1969 at ORNL @ Chemical salt processing plant o
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Research objectives

@ Create high-fidelity full-core 3-D model of MSBR without any
approximations using the continuous-energy SERPENT 2 Monte Carlo
physics software [4].

® Develop online reprocessing simulation code, SaltProc, which expands the
capability of SERPENT for simulation liquid-fueled MSR operation [5].

® Analyse MSBR neutronics and fuel cycle to find the equilibrium core
composition and core depletion.

©® Compare predicted operational and safety parameters of the MSBR at both
the initial and equilibrium states.
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Input data

Table 1: Summary of principal data for MSBR [¢~ st 1o e
Thermal capacity of reactor 2250 MW(t) Ny b
Net electrical output 1000 MW(e) ) 4 ( 4
Net thermal efficiency 44.4% ZoNENs siaTs | 4 T o

Salt volume fraction in central core zone 0.132

Salt volume fraction in outer core zone 0.37

Fuel-salt inventory (Zone I) 8.2 m’ e - \
Fuel-salt inventory (Zone II) 10.8 m? t} ! 4 )
Fuel-salt inventory (annulus) 3.8 m’ é
Fuel salt components LiF-BeF: - gt v
ThFA']?GUFA 4
ies 71.75—16—12' 1, ZONE Il-A CHANNEL )
Fuel salt composition 0.5 mole% ——

Figure 2: Plan view of MSBR vessel [3].
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Moderator element geometry (Zone )

Figure 3: Molten Salt Breeder Reactor Zone | unit cell geometry from the reference [3]
(left) and SERPENT 2 (right).
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Full-core SERPENT model of MSBR I

Figure 4: Plan (left) and elevation (right) view of MSBR model.




Core Zone |l

ZONE 11-A

Figure 5: Detailed plan view of graphite reflector and moderator elements.
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Online reprocessing method

[ Nuclide list F% User input }

SaltProc

e Remove specific isotopes from the core
with specific parameters (reprocessing
interval, mass rate, removal efficiency)

Initial fuel composition —
Removal and refill parameters

SERPENT template input file

Perform setup
calculations

Build SERPENT input|
Run SERPENT

Read depleted nuclides

Perform nuclide
separations and feeds

Generate new
composition file

e Add specific isotopes into the core

e Maintain constant number density of
specific isotope in the core

e Time-dependent material feed and
removal rates

Analyzed
output and
plots

e Store stream vectors in an HDF5
database for further analysis or plots

e Generic geometry: an infinite medium,
a unit cell, a multi-zone simplified
assembly, or a full-core

Figure 6: Flow chart for the SaltProc.
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Online reprocessing method
B
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Figure 7: Protactinium isolation with uranium removal by fluorination [3].

e Continuously removes all poisons, noble metals, and gases.

o 23Pa is continuously removed from the fuel salt into a decay tank.

B~ B~
B Thbn3Th—L s 3pa2 s 38y
-2 min . 13/34
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The effective cycle times for protactinium and fission products removal [3]

Processing group Nuclides Cycle time
Rare earths Y, La, Ce, Pr, Nd, Pm, Sm, Gd 50 days
Eu 500 days
Noble metals _SI_Z’ Nb, Mo, Tc, Ru, Rh, Pd, Ag, Sb, 20 sec
Seminoble metals Zr, Cd, In, Sn 200 days
Gases Kr, Xe 20 sec
Volatile fluorides Br, | 60 days
Discard Rb, Sr, Cs, Ba 3435 days
Protactinium B3p, 3 days
Higher nuclides BTNp, 2Py 16 years
e 2*2Th (maintained constant) o 2%3P3 separated into a decay tank
o 23U returned from Pa decay tank e 100% of other poisons removed

(the feed rate assumed equal to
23P3 removal rate) 19/34
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Effective multiplication factor for full-core MSBR model
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Figure 8: ke during a 20 years depletion simulation.

e Strong absorbers
(33 Th,%**U) accumulating in
the core

e Fissile materials other than
231 are bred into the core
(235U 239Pu)

e The multiplication factor
stabilizes after approximately
6 years
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salt composition evolution

14l o Number density of 2*Pa is
negligible (10'° 1/cm?) but

.. 1.2+ some small amount of it is
g — produced during the 3-day
° 10 ———— = reprocessing period
E 0.8 o Fissile materials other than **U
5 are produced in the core (U,
% 0.6 1 239 Pu)
§ 0.4 T 3;;2 e 2% number density fluctuates
Z — U235 less than 0.8% in the time

0.2 1 — Th232 interval from 16 to 20 years of

T P23 operation
0.0 — Pa232
0 1000 2000 3000 4000 5000 6000 7000

Time step [days]

Figure 9: Normalized number density of major isotopes in
the core during 20 years of operation.
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Neutron spectrum

1le22

—— Initial state
1.2 4 —— Equilibrium state

Neutron Spectrum [per unit lethargy]

10-8 1076 1074 102 10°
Energy [MeV]

Figure 10: Neutron spectrum for startup and
equilibrium composition (normalized per lethargy)

MSBR has a epithermal
spectrum which is
perfect for thorium fuel
cycle

Spectrum becomes
harder due to Pu
isotopes accumulation in
the core

18 /3
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Power and breeding distribution
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Figure 11: Normalized power density Figure 12: 232Th neutron capture reaction rate

normalized by total flux
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Temperature coefficients and control rod worth

Table 2: Temperature coefficients of reactivity for initial and equilibrium state

Eﬁiit{fﬁmﬁm‘ Initial Equilibrium Reference (3]
Fuel salt 32240044 | —153+0046 | 322
Moderator +1.6140.044 +0.97 +0.046 +2.35
Total —3.1+0.04 —0.97+0.046 | —0.87

Table 3: Control system rod worth for initial and equilibrium fuel composition

Reactivity parameter Initial Equilibrium

(Com;r;l (graphite) rod integral worth 28.215 + 0.825 | 28.991+ 0.773
cents

Safety (B4C) rod integral worth (cents) | 251.805 +0.825 | 210.992+0.774

;I'otatl )reactivity control system worth 505.762 & 0.720 | 424.882 + 0.805
cents
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232Th refill rate

3.0
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\
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Figure 13: 232Th feed rate over 20 years of MSBR
operation
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e Full-core fidelity model instead of simplified single-cell model [6] was
implemented to precisely describe the two-region MSBR concept design
sufficiently to accurately represent breeding in the “blanket”

o Effective multiplication factor slowly decreases from 1.075 and reaches 1.02
at equilibrium after approximately 6 years of operation

e Wide diversity of nuclides, including fissile isotopes (e.g. 23U, #*°Pu) and
non-fissile strong absorbers (e.g. **U) keep accumulating in the core

e The neutron energy spectrum is harder for the equilibrium state because a
significant amount of fission products were accumulated in the MSBR core

e The total temperature coefficient and reactivity control system efficiency
decreases throughout reactor operation

o Average 22Th refill rate throughout 20 years of operation is approximately
2.39 kg/day or 100 g/GWh, which is a good agreement with online
reprocessing analysis by Oak Ridge National Laboratory (ORNL)

23 /34
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Future research

@ Reprocessing parameters (e.g. time step, feeding rate, protactinium removal
rate) optimization to achieve maximum fuel utilization, breeding ratio or
safety characteristics

@® Verify SaltProc against SERPENT 2 extended for trully continuous online
fuel reprocessing simulation

® Develop a multi-physics model of the MSBR in the coupled neutronics/
thermal-hydraulics code, Moltres [7]

24 /34
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[E Elements that escape from fuel salt
[O] Elements that can be removed without processing
[ Elements that can be removed only by chemical processing of fuel salt



Conclusions

BUBBLE GENERATOR AND GAS SEPARATOR for MSBR
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Chemical processing facility for MSBR
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MSBR neutron energy spectrum different regions

Neutron Spectrum [per unit lethargy]
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Fissile isotopes producing in MSBR core
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MSBR plain view
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Generation |V Reactors

@ Sustainability

® Economics
© Safety and Reliability
@ Proliferation Resistance and Physical Protection
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Figure 14: A Technology Roadmap for Gen IV Nuclear Energy Systems [1]. 34/34
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