Neutron Kinetics in Liquid-Fueled Nuclear Reactors

IUSSTF Symposium on Advanced Sensors and Modelling Techniques for
Nuclear Reactor Safety

Prof. Kathryn Huff
Advanced Reactors and Fuel Cycles Group

University of lllinois at Urbana-Champaign

December 18, 2018

ILLINOIS

1/61



Introduction

Outline

@ Introduction
ARFC Research Group
Molten Salt Reactors

2 /61



Il citam ARFC Research Group

Advanced Reactors and Fuel Cycles group (Pl: Kathryn Huff) I

ANDREI JIN MARK SUN GWENDOLY! ANSHUMAN
RYKHLEVSKI  WHAN KAMUDA MYUNG CHEE CHAUBE
BAE PARK

® 3

-
GREG ROBERTO LOUIS TYLER ZOE MATTHEW
WESTPHAL FAIRHURST KISSINGER  KENNELLY RICHTER KOZIOL
AGOSTA

Figure: Current undergraduate and graduate students.

3 /61



Il citam ARFC Research Group

Advanced Reactors and Fuel Cycles group (PIl: Kathryn Huff)

ALEX LINDSAY GAVIN RIDLEY SNEHAL ADITYA
CHANDAN BHOSALE

Figure: Past ARFC Group members who contributed to this work.

4 /61



Introduction

ARFC Research Group

Insights at Disparate Scales

High-Fidelity
> Reactor Modeling
and Simulation

~

’
system-level K

impacts of '

design choices

N
.

~_| Global-Scale Nuclear
Fuel Cycle Analysis

\ dominant physics
of promising

technologies

5 /61



Introduction

ARFC Research Group
Molten Salt Reactors

Types of Molten Salt Reactors

® Prismatic graphite block with TRISO fuel and coolant channels (e.g. FHR
DR, TMSR-SF1). Clean salt coolant.

® Stationary TRISO pebble matrix (e.g. TMSR-SF)

® Mobile solid fuel elements, such as pebbles. Clean salt coolant. (e.g.
PB-FHR/Kairos)

® Non-circulating fuel salt, “can-type”. (e.g. Terrapower MCFR)

e Circulating fuel salt “pool-type”. (e.g. MSRE, MSBR, MSFR, Terrestrial
MSR, TAP MSR, etc.)
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Stationary Solid Fuel
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Figure: The AHTR [4] is an example of a fluoride salt cooled reactor design fueled by a
stationary, solid prismatic graphite TRISO compacts, and cooled by clean fluoride salt.
Image source [5].
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Mobile Solid Fuel
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Figure: The PB-FHR is an example reactor design fueled by solid, mobile graphite
pebbles, with TRISO particles embedded in them. Image source [1].
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Mobile, Non-Circulating, Liquid Fuel
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Figure: The MCFR from TerraPower is an example reactor design with liquid, mobile,
non-circulating chloride salt fuel. Image source [12, 2].
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Figure: The MSBR [8] is an example reactor design with liquid, mobile, circulating
fluoride salt fuel, including breeding behavior due to varying channel shapes and sizes.
Image source [9].
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Molten Salt Reactors

Why Molten Salt Reactors?

® High coolant temperature (600-750°C).

@ Various fuels can be used (***U, 23U, Thorium, U/Pu).
© Increased inherent safety.

@ High fuel utilization = less nuclear waste generated.

@ Online reprocessing and refueling.

® Produces more fissile material than it consumes (breeding ratio 1.06).
® Thorium cycle limits plutonium and minor actinides.

@® Could transmute spent fuel from existing Nuclear Power Plant (NPP).
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Molten Salt Reactors

Challenges in Liquid-Fueled Reactor Simulation

® Contemporary burnup codes cannot

treat fuel movement.

® Neutron precursor locations drift before neutron emission.

® Operational and safety parameters change during reactor operation.
® Neutronics and thermal hydraulics are tightly interdependent.

Delayed neutrons
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Figure: Challenges in simulating MSRs (Image courtesy of Manuele Aufiero, 2012).
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Molten Salt Reactors

Approaches

Only appropriate for stationary or nearly stationary fuels.

@ Create high-fidelity full-core neutronics model of the core neutronics can be
necessary for reducing compounding error.

® SaltProc wraps SERPENT monte carlo neutron transport for simulation of
liquid fuel reprocessing.

® Enables day-to-day rsolution off neutronics and reprocessing modeling over
many decades of depletion and fuel cycle performance.

@ Steady-state and transient coupling of neutron fluxes, precursor drift, and
thermal-hydraulics.

® Incorporates advective movement of delayed neutron precursors.
® 2D axisymmetric and 3D geometries supported.
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PyRK: Python for Reactor Kinetics

Figure: Special purpose reactor kinetics python tool (https://github.com/pyrk/pyrk) [6].
Research software for simple PRKE: caveat emptor.

® Multiple precursor groups (j groups)

® Multiple decay heat groups (k groups)

® | umped Parameter thermal hydraulics model

® Optional 1-D conduction in pebble fuel compacts

® Object-oriented, geometry and material agnostic framework
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Spatial Kinetics & TH Coupling with Precursor Advection

Point Reactor Kinetics

p:

reactor power

p(t, Tauet, Teools Tmod, Trefi) = reactivity

ﬁ =

Bi =
G=
Adj =
A=

Wk =
Kk =
AFPk =
T =

fraction of neutrons that are delayed

fraction of delayed neutrons from precursor group j
concentration of precursors of group j

decay constant of precursor group j

mean generation time

decay heat from FP group k

heat per fission for decay FP group k

decay constant for decay FP group k

temperature of component i
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Point Reactor Kinetics
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Lumped Parameter Heat Transfer

The heat flow out of body i is the sum of surface heat flow by conduction,
convection, radiation, and other mechanisms to each adjacent body, j:

Q:Q,-+Zo,-j
—Q+Z:&M

Q = total heat flow out of body i [J-s ']

Qi = other heat transfer, a constant [J - s ']
T; = temperature of body i [K]

T; = temperature of body j [K]

J

R:» = thermal resistence of the component [K -5 - J

adjacent bodies [—]

,1]'

(13)

(14)

(15)
(16)
(17)
(18)
(19)
(20)
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PB-FHR Example

Clean FLiBe
coolant salt
(~2ml/s)
TRISO pebbles
(~10cm/day)

Figure: The pebble fuel can be assumed approximately stationary, as their movement is
not comparable to the longest precursor decay times.
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Point Reactor Kinetics

Figure: Total reactivity during ramped reactivity insertion as a function of inserted

reactivity [13].
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PB-FHR Example
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Figure: Average fuel temperature (left) and average normalized core power (right)
during a ramp reactivity insertion in the PB-FHR [13].
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Point Reactor Kinetics
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Figure: Fuel temperature rise following 1$ ramp reactivity insertion, calculated with
multipoint and single point kinetics in PyRK [13].
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Full-core SERPENT model of MSBR I

Figure: Plan (left) and elevation (right) view of MSBR model.




Spatial Kinetics & TH Coupling with Precursor Advecnon

Core Zone |l

AXIAL RIBS

ZONE -4 93545702 f 'n \ooo\o o\o\o o\o\o

Figure: Detailed plan view of graphite reflector and moderator elements.
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Moderator element geometry (Zone I)

- 4.100 —

—————3.900— -

—1{.728 —-‘

L
— J o i | 0.100
¥ l

;o 1—— 1.950 — : ‘ - -
‘ fuel salt 13.2%

= ; B graphite 86.8%

Figure: Molten Salt Breeder Reactor Zone | unit cell geometry from the reference [8]
(left) and SERPENT 2 (right). 26 / 61
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Online reprocessing method

{ Nuclide list F% User input J

SaltProc

® Remove specific isotopes from the core
with specific parameters (reprocessing
interval, mass rate, removal efficiency)

Initial fuel composition }—
Removal and refill parameters%

SERPENT template input file }—

Perform setup
calculations

Build SERPENT input
Run SERPENT

Read depleted nuclides

Perform nuclide
separations and feeds

Generate new
composition file

® Add specific isotopes into the core

SERPENT composition file . . .
® Maintain constant number density of

specific isotope in the core

® Store stream vectors in an HDF5
database for further analysis or plots

Analyzed
output and
plots

® Generic geometry: an infinite medium,
a unit cell, a multi-zone simplified
assembly, or a full-core

Figure: Flow chart for the SaltProc.
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Online reprocessing method
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Figure: Protactinium isolation with uranium removal by fluorination [8].
® Continuously removes all poisons, noble metals, and gases.

e 23p;3 is continuously removed from the fuel salt into a decay tank.
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Effective multiplication factor for full-core MSBR
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Power and breeding distribution
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Figure: 232Th feed rate over 20 years of MSBR operation
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MOOSE Framework

[ G-V U+ 0, ()07, ‘): —(0:(7)%( ,7+5,~)T§ ® Fully-coupled, fully-implicit multiphysics

o l P solver
cll MOOSE

MOOSE interfaces with libMesh to
discretize simulation volume into finite
elements

® Residuals and Jacobians handed off to
PetSc which handles solution of
resulting non-linear system of algebraic
equations

® Automatically parallel (largest runs
>100,000 CPU cores!)

® Built-in mesh adaptivity

® |ntuitive parallel multiscale solves

Figure: Multi-physics Object-Oriented
Simulation Environment (MOOSE).
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Moltres (Coupling in MOOSE)

Moltres

Describes MSR
governing
equations with
residual functions

MOOSE &
LibMesh

Discretize physics

via FEM, couple
PDEs & system of
equations.

PetSc

Solve algebraic
system of
equations using
Newton methods
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Inro to Moltres

® Fluid-fuelled, molten salt reactors

® Multi-group diffusion (arbitrary groups)

® Advective movement of delayed neutron precursors
® Navier-Stokes thermal hydraulics

® 3D unstructured

® 2D axisymmetric

® 3D structured
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Acquiring Moltres

git clone https://github.com/arfc/moltres
cd moltres

git submodule init

git submodule update
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Diffusion in Moltres

Vig% —V DgVg+ Totg = (21)

G G !
D Tt XY (L= AVEL Gy +xg Y NG (22)

g#g’ g’'=1 i
vg = speed of neutrons in group g (23)
¢g = flux of neutrons in group g (24)
t = time (25)
D, = Diffusion coefficient for neutrons in group g (26)
Z; = macroscopic cross-section for removal of neutrons from group g (27)
ZZ'%g = macroscopic cross-section of scattering from g’ to g (28)
XZ = prompt fission spectrum, neutrons in group g (29)
G = number of discrete groups, g (30)
v = number of neutrons produced per fission (31)
Z; = macroscopic cross section for fission due to neutrons in group g (32)
X: = delayed fission spectrum, neutrons in group g (33)
| = number of delayed neutron precursor groups (34)

A — delaved neutron fraction (35) 36/61
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Moltres Delayed Neutrons

G
lel )
o = > BELge — NG - 554G (38)
g'=1
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Moltres Fuel Temperature

0T .
pfcp,faitf + V- (prco - Tr — keVTr) = Qf

pr = density of fuel salt
¢p,r = specific heat capacity of fuel salt
Tr = temperature of fuel salt
U = velocity of fuel salt

ks = thermal conductivity of fuel salt
G
Qr = source term = Z €f.g2f gPg

g=1

(39)

(40)
(41)
(42)
(43)
(44)

(45)
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Moltres Moderator Temperature

oT,
chp,thg + V- (=kVTe) = Qg

pg = density of graphite moderator

Cp,g = specific heat capacity of graphite moderator
Tg = temperature of graphite moderator
kg = thermal conductivity of graphite moderator

Qg

source term in graphite moderator

(46)
(47)

(48)
(49)
(50)
(51)
(52)
(53)
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Moltres MSRE Simulation
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Fig. 6. MSKE Reactor Vessel.
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Moltres MSRE Simulation

Table 2
Simulation input parameters.

Parameter Value Units Source

Inlet temp. 922 K MSRE nominal (Robertson, 1965)

Wall temp. 922 K MSRE nominal (Robertson, 1965)

Neutron groups 2 1 User

Precursor groups 6 1 User

Reactor radius 725 cm ~MSRE radius (70.2 cm) (Robertson, 1965)

Reactor height 151.75 a User

K 0553 Wem- K- Robertson (1965)

Gr 1967 JK kg Robertson (1965)

o 214610 % %1522 kgem™ Robertson (1965)

@ 212.10° K Haubenreich and Engel (1970)

ke 312 Wem 1K Cammi et al. (2011)

s 1760 1K kg Cammi et al. (2011)

P 1.86-10-%¢ %7922 kgm=3 Robertson (1965)

@ 18-10°% K Haubenreich and Engel (1970)

Figure:

Data used in [7].
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Moltres MSRE Simulation

Table 1

Fuel salt composition is the BOL enriched uranium composition in the MSRE design
(Robertson, 1965).

Component Mass fraction
Li-7 .1090

Li-6 5x 107

F-19 .6680

Be-9 .0627

U-235 .0167

U-238 .0344

Figure: Data used in [7].
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Moltres (coupling in MOOSE)
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Moltres Precursor Drift
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Moltres MSRE Comparison
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Fig. 11. Moltres and MSRE design (Briggs, 1964, p. 99) predicted axial temperature
profiles in hottest channel and adjacent graphite.
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Moltres MSRE Comparison
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Fig. 12. The thermal and fast flux profiles at the core mid-plane (z = H/2) for the
Moltres 2-D cylindrical axisymmetric model and the MSRE design model (Briggs,
1964, p. 92) (r = 0 is radial center of core).
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Moltres MSRE Comparison

—_
o) (=]
T T

Fluxes (10 cm~2s1)
N

@1 moltres

—— ¢y moltres
— ¢ msre

— ¢y msre

0 50 100 150 200
z (cm)

Fig. 13. Moltres axial flux profiles along the core center line and MSRE design axial
flux profiles 21.336 cm (8.4 inches) from the core center line (Briggs, 1964, p. 91).
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Figure: Cuboidal MSR steady-state temperature and fast neutron flux tests by Gavin
Ridley.
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Conclusions

Ordinary tools cannot capture kinetics in mobile fuels or long term fuel cycle
performance of liquid-fuelled reactors.

® New tool SaltProc was developed to simulate fuel depletion in MSRs.

® SaltProc was tested for the MSBR conceptial design, equilibrium fuel salt
composition was found and verified against recent studies.

® New tool Moltres was developed for modeling coupled physics in novel
molten salt reactors.

® 2D-axisymmetric and 3D multiphysics models are presented.

® Moltres demonstrated strong parallel scaling (up to 384 physical cores) but
further optimization required.

® QOver 55,000 node-hours were consumed on Blue Waters to perform this
research.
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Future research

@ Improved TH capabilities in Moltres will enable more realistic precursor drift.
® Equilibrium state search for Transatomic MSR (>30,000 node-hours).

© Fuel cycle performance analysis for load-following regime
(>40,000 node-hours).

0 Light Water Reactor (LWR) fuel transmutation in MSR viability (>30,000
node-hours).

@ Start exploring transients in Moltres, e.g. explore responses to reactivity
insertion or gaseuos poison removal (>70,000 node-hours).
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Processing options for MSR fuels

[E Elements that escape from fuel salt
[C] Elements that can be removed without processing
[0 Elements that can be removed only by chemical processing of fuel salt
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BUBBLE GENERATOR AND GAS SEPARATOR for MSBR
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Chemical processing facility for MSBR
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Multiplication factor dynamics during Rb, Sr, Cs, Ba removal (3435days)
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MSBR neutron energy spectrum for different regions
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Fissile isotopes in the MSBR core
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MSBR plain view
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