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Background

Education

• BS in Nuclear Engineering, University of Tennessee, Knoxville (2019)

• MS in Nuclear Engineering, University of Tennessee, Knoxville (2020)

• PhD in NPRE, University of Illinois Urbana-Champaign (In Progess)

Research Experience

• Multivariate modeling of radiation signatures for safeguards

• Modeling material flow through a pyroprocessing facility

• Comparing effects of Doppler broadening methods in SHIFT (ORNL)

• Investigating fuel cycle impacts of using High Assay Low Enriched Uranium
(HALEU) in reactors
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Introduction

• Multiple new reactor designs
require HALEU fuel, which
allows for:

• Longer cycle times
• Higher burnups

• To meet the HALEU demand,
the U.S. Department of Energy
(DOE) has proposed two
methods [3]:

• Recovery and downblending
of High Enriched Uranium
(HEU)

• Enrichment of natural
uranium

Table 1: Categories of uranium
enrichment by weight fraction of
uranium-235.

Category Weight fraction (%)
Depleted <0.711
Natural 0.711
LEU 0.711-20
HALEU 5-20
HEU ≥20
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Overview of the Nuclear Fuel Cycle
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Figure 1: Overview of the Nuclear Fuel Cycle.
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Objectives

This work explores how developing a supply chain of HALEU affects the nuclear
fuel cycle in the US.

• Quantify material requirements of the transition to reactors fueled by
HALEU

• Perform sensitivity analysis to understand how each of these metrics are
affected by model parameters

• Identify potential fuel cycles that are optimized for specific objectives

• Investigate how the impurities in HEU stockpiles affects reactor neutronics
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Once-through transitions provide expected demand of HALEU

• If we understand the demand for HALEU for reactors, then we can
understand how much needs to be made.

• Factors that affect demand:
• Reactor type
• Energy demand

• We can use fuel cycle simulators to model these transitions
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Fuel cycle models contains various assumptions
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Figure 2: Fuel cycle facilities and material flow
between facilities.

Model transitions using Cyclus

• Simulations model reactor
deployment from 1965-2090

• Light Water Reactor (LWR)
commission dates are
obtained from the IAEA
PRIS database [1]

• LWRs are assumed to
operate for 60 years, unless
they were decommissioned
by December 2020

• Transitions begin in 2025

• Cyclus determines the
number of reactors that
need to be deployed
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Multiple reactors and energy demands are considered

Table 2: Advanced reactor design specifications

Design Criteria USNC MMR [6] X-energy Xe-100 [4] [5]

Power Output (MWe) 10 75

Enrichment (% 235U) 13 15.5

Cycle Length (yr) 20 Online

Reactor Lifetime (yr) 20 60

Burnup (MWd
kgU

) 42.7 160

Table 3: Scenario Descriptions

Scenario Advanced Reactor Growth
1 N/A N/A
2 USNC MMR None
3 X-energy Xe-100 None
4 USNC MMR 1%
5 X-energy Xe-100 1%
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Energy demand is not fully met during the transition

• Energy produced by LWRs in
Scenario 1 in 2025 is 91.818
GWe-y

• Scenarios 2 and 3 do not meet
demand between 2030-2050

• Scenarios 4 and 5 do not meet
demand between 2026-2048

• Noticable deviations from
demand in Scenarios 2, 4 when
new reactors are deployed

• Initial gap between demand and
energy produced is due to how
Cyclus is deploying the
reactors

Figure 3: Energy produced each year by
all reactors in Scenarios 1-3 (top) and
Scenarios 1, 4, 5 (bottom)
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Reactor deployment scales with the power of the reactors

• The last LWR is decommissied
in 2076

• In the no growth scenarios
(Scenarios 2 and 3) the
advanced reactors are deployed
starting in October 2031

• In the 1% growth scenarios
(Scenarios 4 and 5) the
advanced reactors are deployed
starting in March 2029

• The maximum number of
advanced reactors deployed at
one time in Scenarios 2-5 are
9182, 1225, 17656, and 2361
reactors, respectively

Figure 4: Reactor deployment schedule
for LWRs and advanced reactors.
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Uranium supplied to reactors varies greatly between designs

• All scenarios have the same
uranium demands until
advanced reactors are deployed

• Large peaks in Scenarios 2 and
4 correspond to the deployment
of new reactors

• Less variation with time in the
uranium supplied to reactors for
Scenarios 3 and 5 than
Scenarios 2 and 4

Figure 5: Uranium mass for LWRs +
HALEU (top) and only HALEU
(bottom)
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What do these results tell us?

• Transitions to the X-energy Xe-100 reactor are better able to meet the
energy demand of the scenarios due to longer lifetimes

• Transitions to the Ultra Safe Nuclear Corporation (USNC) Micro Modular
Reactor (MMR) have significantly more material requirements than
transitions to the X-energy Xe-100

• Online refuling of X-energy Xe-100 provides a more consistent demand for
fuel

• Changing to a 1% growth demand model requires advanced reactors to be
deployed 2.5 years earlier

• Understand the material demands of these transitions helps us design
facilities for a future fuel cycle

Full results can be found in [2].
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Ongoing Work

• Once-through transitions
• Incorporate LWR license

expiration dates
• Quantify natual uranium

needs and waste
production in these
transitions

• Simulate transitions to
multiple types of
advanced reactors

• Model transitions with
recycling

• Impacts the resource
utilization?

• Impacts of limited vs
continuous recycling?

Uranium Mine

Enrichment
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Wet Storage

Dry Storage

Cooling Pool
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Separations

Fuel Fab
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Figure 6: Fuel cycle facilities and material flow
between facilities. Facilities in red are added in
for the transition scenarios.
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Ongoing Work (Cont.)

• Perform sensitivity analysis
• Transition start time
• Fleet share for each reactor
• LWR lifetimes

• Optimize the transition

• Investigate neutronics effects of HEU impurities
• Effects on neutron flux and keff
• Effects on safety parameters?
• More work to investigate this question?
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Summary

• Investigating the transition to
HALEU-fueled reactors

• Results show larger uranium
mass requirements to transition
to MMR than Xe-100

• Working on investigation
material needs when fuel is
recycled.
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