
Useful Practices in Open-Source Software Development for
Nuclear Science and Engineering

Oleksandr Yardas
Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

April 16, 2022

1 / 31

Introduction
Useful practices

Conclusion

Outline

1 Introduction

2 Useful practices
Version control
Open development workflow
Automation and continuous integration

3 Conclusion

2 / 31

Introduction
Useful practices

Conclusion

About me

• Advanced Reactors and Fuel
Cycles (ARFC) group at UIUC

• Software tools for development,
verification, and lisencing of
advanced reactors

• Open source

3 / 31

Introduction
Useful practices

Conclusion

Software

Sources: [3], [7], [17]

• Ultimately, software is a tool we can use to solve (potentially) complex
problems.

4 / 31

Introduction
Useful practices

Conclusion

What kinds of problems do we use software to solve?

Sources: [19],[14],[13],[9]

• Neutron transport

• Thermal hydraulics

• Accident analysis

• Materials

• Decay chains

• PRA

5 / 31

Introduction
Useful practices

Conclusion

What kinds of problems do we use software to solve?

Sources: [19],[14],[13],[9]

• Neutron transport

• Thermal hydraulics

• Accident analysis

• Materials

• Decay chains

• PRA

5 / 31

Introduction
Useful practices

Conclusion

Advanced reactor modeling

Regulatory bodies will require new software features in order to effectively and
efficiently perform licensing activities for the next generation of reactor
designs[20]

International Atomic Energy Agency (IAEA) facilitated Open-source Nuclear
COdes for REactor analysis (ONCORE) initiative[12]:

“ONCORE. . . is an IAEA-facilitated international collaboration framework for the
development and applictaion of open-source multi-physics simulation tools to
support research, education, and training for analysis of advanced nuclear power
reactors”[15]

6 / 31

Introduction
Useful practices

Conclusion

Advanced reactor modeling

Regulatory bodies will require new software features in order to effectively and
efficiently perform licensing activities for the next generation of reactor
designs[20]

IAEA facilitated ONCORE initiative[12]:

“ONCORE. . . is an IAEA-facilitated international collaboration framework for the
development and applictaion of open-source multi-physics simulation tools to
support research, education, and training for analysis of advanced nuclear power
reactors”[15]

6 / 31

Introduction
Useful practices

Conclusion

Open source software

Software whose source code is public.

• Promotes collaborative
contributions

• Reduces duplicate work

A sample of open-source codes in the
nuclear space

• OpenMC (monte carlo neutron
transport)

• MOOSE (multiphysics finite
element framework)

• nekRS (Spectral element
computational fluid dynamics)

7 / 31

Introduction
Useful practices

Conclusion

Open source software

Software whose source code is public.

• Promotes collaborative
contributions

• Reduces duplicate work

A sample of open-source codes in the
nuclear space

• OpenMC (monte carlo neutron
transport)

• MOOSE (multiphysics finite
element framework)

• nekRS (Spectral element
computational fluid dynamics)

7 / 31

Introduction
Useful practices

Conclusion

How to develop features in open-source software?

There’s no “right” way to do this, but there are useful conventions and concepts:

• Code standards (e.g. PEP8, The C Standard)
• User and developer guides

• Installation instructions
• API documentation
• Contributing guidelines

• Version control

• Open development

• Automation

These conventions and practices work in closed codes as well!

8 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Outline

1 Introduction

2 Useful practices
Version control
Open development workflow
Automation and continuous integration

3 Conclusion

9 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Version Control

Version control is the practice of the tracking changes.

Commits retain information about who made them, preserving attribution and
authorship wihtout needing to store metadata in source files themselves.

10 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Version Control Systems

Sources: [17], [18], [8]

Software that tracks changes via commits.

Basic workflow:

1 Make changes to tracked files in your local repository

2 Stage the changes.

3 Commit the stages changes to the repository

4 Push the commited changes to a remote repository (where the official
version of the code is hosted)

11 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

A real-life git example
Fixing a typo in OpenMC

Excerpt of openmc/surface.py (lines 1970 - 1972)

class ZCone(QuadricMixin, Surface):

"""A cone parallel to the x-axis of the form :math:`(x - x_0

)^2 + (y - y_0)^2 = r^2 (z - z_0)^2`.

Make our fix:

class ZCone(QuadricMixin, Surface):

"""A cone parallel to the z-axis of the form :math:`(x - x_0

)^2 + (y - y_0)^2 = r^2 (z - z_0)^2`.

12 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

A real-life git example
Fixing a typo in OpenMC

In the shell:

user@computer1:~/openmc$ git add openmc/surface.py

user@computer1:~/openmc$ git commit -m "fix axis spec in docstri

ng for ZCone"

user@computer1:~/openmc$ git push

In this case, we pushed to the openmc-dev/openmc repository on GitHub. The
commit is here → https://github.com/openmc-dev/openmc/pull/2018/

commits/48dbf1a4c3a83bf7abd0722ab868f532abc6b5bd

13 / 31

https://github.com/openmc-dev/openmc/pull/2018/commits/48dbf1a4c3a83bf7abd0722ab868f532abc6b5bd
https://github.com/openmc-dev/openmc/pull/2018/commits/48dbf1a4c3a83bf7abd0722ab868f532abc6b5bd

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Open development

Open source: hosting code publicly

Open development: is a set of development practices that emphasizes
reproducibility and searchability:

• Verbose commit messages

• Ticketing system to track bugs and feature proposals

• Robust justification for bug fixes and features

Web-based development platforms like GitHub, GitLab, and BitBucket all
provide interfaces that can accomodate an open development approach, in
additon to hosting open souurce code.

Sources: [5], [6], [1]

14 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Why open development?

Open development leverages the
expertise of the community, leading
to more robust software.

Open development decision making
process is well documented,
simplifying onboarding of new and
external developers.

Closed codes can adopt open
development practices too! For more on open development,

check out Working in Public by
Nadia Eghbal [11]

15 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Open development example
Implementing OpenMC in SaltProc

Idea: Implement OpenMC in an open-source Molten Salt Reactor depletion
simulator1

In the issue tracker, I detail background/motivation and the description of the
idea:

1You can find the issue here: https://github.com/arfc/saltproc/issues/133
16 / 31

https://github.com/arfc/saltproc/issues/133

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Open development example
Implementing OpenMC in SaltProc

I also detail a skeleton design/implementation:

17 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Open development example
Implementing OpenMC in SaltProc

Finally, I write down any snags I can think of:

18 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Automation

Source: [16]

Automating out repetitive tasks saves more time for designing and developing
features and bug fixes.

Automation frameworks provide a configurable and tested method to create and
execute automated tasks.

19 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

Automation Framework

Sources: [2], [4]

Automation frameworks are services execute user-created instruction sets called
workflows when certain conditions, or triggers, are met.
Automation frameworks can read files from the main host repository. This
enables users to create workflows to do things like:

• automatically run a test suite whenever the code changes (continuous
integration)

• build and deploy online documentation

• manage repository metadata

20 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

GitHub Actions

GitHub Actions is an automation framework integrated into every GitHub
repository.

Source: [10]

The basic workflow file structure is as follows:

• Workflow name

• Define workflow triggering events

• Define the workflow jobs and steps

21 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

GitHub Actions Workflow Example
Populating SaltProc release notes

Preamble

name: Populate SaltProc release notes

on:

push:

branches:

- 'master'

paths:

- 'doc/releasenotes/v**.rst'

enable worflow to be run manually

workflow_dispatch:

jobs:

populate-releasenotes:

runs-on: ubuntu-latest

defaults:

run:

shell: bash -l {0}

22 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

GitHub Actions Workflow Example
Populating SaltProc release notes

steps:

- uses: actions/checkout@v2

- name: Set up Python 3.9

uses: actions/setup-python@v2

with:

python-version: 3.9

- name: Add conda to system path

run: |

$CONDA is an environment variable pointing to the

root of the miniconda directory

echo $CONDA/bin >> $GITHUB_PATH

- name: install pandoc

run: |

conda install -c conda-forge pandoc

pip install --upgrade pandoc

23 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

GitHub Actions Workflow Example
Populating SaltProc release notes

- name: Get most recent draft release version

run: |

echo "RELEASE_VERSION=$(gh api repos/

${{ github.repository }}/

releases --jq '.[0] | .name')" >> $GITHUB_ENV

echo "RELEASE_ID=$(gh api repos/

${{ github.repository }}/

releases --jq '.[0] | .id')" >> $GITHUB_ENV

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

- name: Convert .rst to .md

run: |

pandoc -o RELEASENOTES.md -f rst -t gfm doc/releasenotes/

${{ env.RELEASE_VERSION }}.rst --columns 1000

sed -i "s/# Release notes for ${{ env.RELEASE_VERSION }}//g"

RELEASENOTES.md

24 / 31

Introduction
Useful practices

Conclusion

Version control
Open development workflow
Automation and continuous integration

GitHub Actions Workflow Example
Populating SaltProc release notes

- name: Populate the release description with RELEASENOTES.md

run: |

CURRENT_TAG=$(gh api repos/${{ github.repository }}/

releases/${{ env.RELEASE_ID }} \

-H "Authorize: token ${{ secrets.GITHUB_TOKEN }}" \

-H "Accept: application/vnd.github.v3+json" \

-X GET \

--jq '.tag_name')

gh api repos/${{ github.repository }}/releases/

${{ env.RELEASE_ID }} \

-H "Authorize: token ${{ secrets.GITHUB_TOKEN }}" \

-H "Accept: application/vnd.github.v3+json" \

-X PATCH \

-F tag_name=$CURRENT_TAG \

-F body="$(cat RELEASENOTES.md)"

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

25 / 31

Introduction
Useful practices

Conclusion

Outline

1 Introduction

2 Useful practices
Version control
Open development workflow
Automation and continuous integration

3 Conclusion

26 / 31

Introduction
Useful practices

Conclusion

Main takeaways

• Open source software is becoming an important component of modeling
and simulation for advanced reactors.

• Version control helps us keep track of changes and work on multiple
features at once.

• Open development makes our code more robust and ensures new and
external contributors can understand design and implementation desicions.

• Automating out repetitive tasks helps catch bugs and streamline the
development workflow.

27 / 31

Introduction
Useful practices

Conclusion

Acknowledgement

ARFC group members
NRC Integrated University Grant Program Fellowship

28 / 31

Introduction
Useful practices

Conclusion

References I

[1] Bitbucket Logo.

[2] CircleCI Logo.

[3] Firefox Logo.

[4] Github Actions Logo.

[5] Github Logo.

[6] GitLab Logo.

[7] OpenMC Logo.

[8] Subversion Logo.

[9] ARMI 0.2.3 documentation.

Transmutation and decay reactions.

[10] GitHub Actions Documentation.

Understanding GitHub actions.

29 / 31

Introduction
Useful practices

Conclusion

References II

[11] Nadia Eghbal.

Working in public : the making and maintenance of open source software.

Stripe Press, San Francisco, CA, 2020.

[12] C. Fiorina, P. Shriwise, A. Dufresne, J. Ragusa, K. Ivanov, T. Valentine, B. Lindley, S. Kelm,
E. Shwageraus, S. Monti, C. Batra, A. Pautz, S. Lorenzi, P. Rubiolo, I. Clifford, and
B. Dechenaux.

AN INITIATIVE FOR THE DEVELOPMENT AND APPLICATION OF OPEN-SOURCE
MULTI-PHYSICS SIMULATION IN SUPPORT OF r&d AND e&t IN NUCLEAR SCIENCE
AND TECHNOLOGY.

247:02040.

Publisher: EDP Sciences.

[13] CNERG group website.

DAGMC: Direct Accelerated Geometry Monte Carlo.

[14] OpenMC User’s Guide.

Chapter 9. Geometry Visualization.

[15] IAEA.

Open-source nuclear codes for reactor analysis - home.

30 / 31

Introduction
Useful practices

Conclusion

References III

[16] Iyi Kon.

Robot vector icon.

[17] Jason Long.

Git Logo.

[18] Matt Mackall and Cali Mastny.

Mercurial Logo.

[19] ORNL.

ExaSMR: Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small Modular
Reactors.

[20] U.S. Nuclear Regulatory Comission.

NRC non-light water reactor vision and strategy, volume 1 - computer code suite for non-LWR
plant systems analysis.

31 / 31

	Introduction
	Useful practices
	Version control
	Open development workflow
	Automation and continuous integration

	Conclusion

