A Hybrid S_N -Diffusion Method for Molten Salt Reactor Control Rod Modeling M&C 2025 Sun Myung Park, The University of Texas at Austin Kathryn D. Huff, University of Illinois Urbana-Champaign Madicken Munk, Oregon State University April 28, 2025 ### Outline - 1 Introduction Motivation Objective - Theory & Methodology Introduction to Moltres Hybrid S_N-Diffusion Method 1-D Test Case Setup - $oldsymbol{\$}$ Results & Discussion $k_{ m eff}$ and Rod Worth Neutron Flux Distribution Impact of Correction Subregion Sizes S_N Convergence Tolerance - 4 Conclusion Conclusion References ### Outline - 1 Introduction Motivation Objective - 2 Theory & Methodology Introduction to Moltres Hybrid S_N-Diffusion Method 1-D Test Case Setup - Results & Discussion k_{eff} and Rod Worth Neutron Flux Distribution Impact of Correction Subregion Sizes Sw. Convergence Tolerance - 4 Conclusion Conclusion References ### Control Rods in MSRs Control rods provide a means of controlling the fission rate in nuclear reactors. - Facilitate reactor start-up, shut-down, or load-following operations - Consist of highly neutron-absorbing materials such as boron or gadolinium Control rods are also important for licensing and safety characterization. \Rightarrow It is important to characterize control rod effects in all relevant transient scenarios. Figure 1: Centrally located control rods in the Molten Salt Reactor Experiment (MSRE) [1] ### Control Rod Modeling Control rods induce highly anisotropic neutron fluxes and steep flux gradients in their vicinity. #### **Control Rod Modeling Dilemma** - Neutron diffusion, P₁, and SP_N methods perform poorly near control rod regions due to the highly anisotropic neutron fluxes and steep flux gradients - High-fidelity neutron transport methods remain too computationally expensive for routine time-dependent multiphysics simulations ### Control Rod Modeling Control rods induce highly anisotropic neutron fluxes and steep flux gradients in their vicinity. #### **Control Rod Modeling Dilemma** - Neutron diffusion, P₁, and SP_N methods perform poorly near control rod regions due to the highly anisotropic neutron fluxes and steep flux gradients - High-fidelity neutron transport methods remain too computationally expensive for routine time-dependent multiphysics simulations #### **Objective** Develop a hybrid S_N -diffusion method for accurate control rod modeling in time-dependent MSR analyses. ### Outline - 2 Theory & Methodology Introduction to Moltres Hybrid S_N-Diffusion Method 1-D Test Case Setup - Results & Discussion k_{eff} and Rod Worth Neutron Flux Distribution Impact of Correction Subregion Size S_N Convergence Tolerance - 4 Conclusion Conclusion References ### Moltres for MSR Multiphysics Modeling #### What is Moltres? Moltres [2] is an open-source, MOOSE-based multiphysics application for modeling MSRs #### Software Capabilities for MSR Modeling - Multigroup neutron diffusion solver - Temperature reactivity feedback by interpolating temperature-dependent group constant data - · delayed neutron precursor (DNP) drift coupling with flow modeling - Out-of-core DNP decay - Couples with MOOSE modules for thermal-hydraulics modeling ### Existing Methods in Literature #### Transport-Correction Techniques For Neutron Diffusion-Based Solvers Techniques for augmenting the neutron diffusion method (or equivalent low-order equations) with corrections derived from neutron transport: - Ronen method [3, 4, 5] - Multilevel quasi-diffusion method [6, 7, 8] - Multischeme transport method [9] - Hybrid transport-diffusion method [10, 11] These techniques generally require: - High-order neutron transport solver - Corrective terms for the neutron diffusion equations - Boundary coupling scheme (for spatial domain decomposition) #### **Method Overview** - Applies the discrete ordinates (S_N) method to a small subregion around a control rod to generate corrections for the neutron diffusion equation - ullet Limits computationally expensive S_N calculations to small subdomains - · Retains the computational efficiency of the neutron diffusion method - Applies an adaptive algorithm to smooth flux gradients near the S_N-diffusion interface Figure 2: Illustration of the problem domains of the S_N and neutron diffusion methods in an example 1-D problem. ### Multigroup Discrete Ordinates S_N Neutron Transport Equations The multigroup S_N equations defined on the 3-D spatial domain $\mathcal D$ and 2-D unit sphere angular domain $\mathcal S$ is: $$\hat{\Omega} \cdot \nabla \Psi_{g}(\vec{r}, \hat{\Omega}, t) + \Sigma_{t,g} \Psi_{g}(\vec{r}, \hat{\Omega}, t) = \sum_{g'=1}^{G} \int_{\mathcal{S}} \Sigma_{s}^{g' \to g} (\hat{\Omega}' \to \hat{\Omega}) \Psi_{g'}(\vec{r}, \hat{\Omega}', t) d\hat{\Omega}' + \frac{1}{4\pi} \frac{\chi_{p,g} (1-\beta)}{k} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \phi_{g'}(\vec{r}, t) \quad (1)$$ with boundary conditions: $$\Psi_g(\vec{r}, \hat{\Omega}) = \Psi_g^{\mathsf{inc}}(\vec{r}, \hat{\Omega}) + \alpha_g^s \Psi_g(\vec{r}, \hat{\Omega}_r) \text{ on } \vec{r} \in \partial \mathcal{D} \text{ and } \hat{\Omega} \cdot \hat{n}_b < 0, \tag{2}$$ where $\Psi_g^{\rm inc} = {\rm incident}$ surface source in group g, $\alpha_g^s = {\rm specular}$ reflectivity on $\partial \mathcal{D}$ for group g, $\hat{\Omega}_r = \hat{\Omega} - 2(\hat{\Omega} \cdot \hat{n}_b)\hat{n}_b = {\rm reflection}$ angle, $\hat{n}_b = {\rm outward}$ unit normal vector on the boundary. ### Self-Adjoint Angular Flux (SAAF) Formulation of the Multigroup S_N Equations Second-order linear neutron transport equation derived by obtaining the analytical solution of angular flux and substituting it back into the $S_{\mathcal{N}}$ equations. #### Implementation Details - Implemented with finite element method (FEM) - Compatible with the efficient and scalable Hypre-BoomerAMG preconditioning - Uses a modified formulation to handle $1/\Sigma_{t,g}$ factor in near-void regions (similar to Streamline-Upwind/Petrov Galerkin (SUPG) stabilization scheme) [12] - ullet Level-symmetric quadrature set for angular discretization (up to S_{18}) - Nonlinear diffusion acceleration scheme [12] #### Multigroup Neutron Diffusion Equations $$-\nabla \cdot D_{g} \nabla \phi_{g} + \Sigma_{g}' \phi_{g} = \sum_{g' \neq g}^{G} \Sigma_{g' \to g}^{s} \phi_{g'} + \frac{\chi_{p,g} (1 - \beta)}{k} \sum_{g'=1}^{G} \nu \Sigma_{g'}^{f} \phi_{g'}$$ (3) Traditionally, $D_{\rm g}$ is determined through region-wide neutron interaction tallies in high-fidelity neutron transport simulations as follows: $$D_g = \frac{1}{3\Sigma_{t,g}} \quad \text{(isotropic)} \tag{4}$$ $$D_g = \frac{1}{3\Sigma_{tr,g}} = \frac{1}{3(\Sigma_{t,g} - \Sigma_{s1,g})} \quad \text{(linearly anisotropic)} \tag{5}$$ where $\Sigma_{\it tr} =$ macroscopic transport cross section #### **Drift Correction Scheme** This scheme arises from adding a drift term $(\vec{D}_g \cdot \nabla \phi_g)$ [12] to the neutron diffusion equations: $$\vec{D}_{g} = \frac{\sum_{d=1}^{N_{d}} w_{d} \left(\tau_{g} \hat{\Omega}_{d} \hat{\Omega}_{d} \cdot \nabla \Psi_{g,d} + \left(\tau_{g} \Sigma_{t,g} - 1 \right) \hat{\Omega}_{d} \Psi_{g,d} - \tau_{g} \sum_{g'=1}^{G} \Sigma_{s,1}^{g' \to g} \hat{\Omega}_{d} \Psi_{g',d} - D_{g} \nabla \Psi_{g,d} \right)}{\sum_{d=1}^{N_{d}} w_{d} \Psi_{g,d}}, \quad (6)$$ $$\gamma_g = \frac{\sum_{\hat{\Omega}_d \cdot \hat{n}_b > 0} w_d |\hat{\Omega}_d \cdot \hat{n}_b| \Psi_{g,d}}{\sum_{d=1}^{N_d} w_d \Psi_{g,d}}.$$ (7) The drift term also provides pointwise corrections to the neutron diffusion equations. This formulation is derived from the SAAF- S_N equations by integrating over the angular domain and eliminating terms shared by the neutron diffusion equations. #### S_N Subsolver Boundary Conditions For the hybrid S_N -diffusion method to converge, it requires appropriate boundary conditions for the S_N subproblem. The P_1 approximation for evaluating the neutron angular flux along the discrete ordinates $\hat{\Omega}_d$ of the S_N angular quadrature set is: $$\Psi_{g,d} \approx \frac{1}{4\pi} \left(\phi_g^{\text{diff}} + 3\hat{\Omega}_d \cdot \bar{J}_g^{\text{diff}} \right)$$ $$= \frac{1}{4\pi} \left(\phi_g^{\text{diff}} - 3\hat{\Omega}_d \cdot D_g \nabla \phi_g^{\text{diff}} \right)$$ (8) Therefore, the boundary source term for the S_N subsolver is: $$\Psi_{g,d}^{\text{inc}} = \frac{1}{w} \left(\phi_g^{\text{diff}} - 3\hat{\Omega}_d \cdot D_g \nabla \phi_g^{\text{diff}} \right) \tag{9}$$ where w is the sum of weights of the level-symmetric quadrature set. ## Hybrid S_N -Diffusion Method Algorithm Legend: V_0 : Full problem domain V_1 : Problem subdomain containing control rod region $\vec{D}_g^{(i)}$: drift correction parameter in the *i*-th iteration ### Correction Region (V_1) and Buffer Region Figure 4: 1-D geometry for Case 3b. - The approximate S_N boundary conditions will yield some flux deviations near the correction region boundary. - This affects transport correction parameters near the boundary. Figure 5: The reference and hybrid drift (\vec{D}_g) distributions for group 1 and 8 calculated from S_8 and S_8 -diffusion simulations. The correction subregion V_1 spans x=0 cm to x=10 cm. ### Correction Region (V_1) and Buffer Region A natural/intuitive criterion for the location of the buffer region cutoff boundary would be wherever the components of the drift correction variable \vec{D}_g is zero, i.e., wherever the components change signs. - ${\bf 0}$ At points where the \vec{D}_g components are zero, the flux is approximately isotropic along the axes corresponding to the components. - 2 This choice preserves the smoothness of the neutron flux gradient. Figure 6: The reference and hybrid drift (\vec{D}_g) distributions for group 1 and 8 calculated from S_8 and S_8 -diffusion simulations. The correction subregion V_1 spans x=0 cm to x=10 cm. #### Numerical Implementation The SAAF- S_N and hybrid S_N -diffusion method with the drift correction scheme were implemented on Moltres. - Preconditioned Jacobian-free Newton-Krylov (PJFNK) solver [13] - Hypre-BoomerAMG (Algebraic multigrid) preconditioning [14] - MultiApp and Transfers systems from MOOSE for iterative coupling and data transfers - Supporting material and utility C++ classes for loading group constant data and performing angular quadrature calculations ### 1-D MSRE Neutronics Model Geometries Figure 7: Geometries of the 1-D test cases. The material labeled "mixture" represents a homogeneous mixture of fuel and graphite at a ratio of 22.5%-77.5% by volume. All geometries have reflective boundary conditions on the boundary at x=0 cm. The right-side boundaries are reflective for Cases 1a and 1b, and vacuum for Cases 2a, 2b, 3a, and 3b. ### 1-D MSRE Neutronics Modeling Approach #### 1-D Neutronics Model Setup - Material compositions derived from the MSRE design - Reduced gadolinium content in control rod to 0.35 wt% - Eight neutron energy groups - Group constants generated using OpenMC with up to 2nd-order Legendre expansions of scattering matrices - Uniform temperature at 900 K Table 1: Neutron energy group structure in this work. Originally devised by Jaradat [15]. | Group | Upper energy bound [eV] | | | | |-------|-------------------------|--|--|--| | 1 | 2.000×10^{7} | | | | | 2 | 1.353×10^{6} | | | | | 3 | 6.734×10^4 | | | | | 4 | 9.118×10^{3} | | | | | 5 | 1.487×10^{2} | | | | | 6 | 4.000×10^{0} | | | | | 7 | 6.250×10^{-1} | | | | | 8 | 8.000×10^{-2} | | | | | | | | | | ### 1-D MSRE Neutronics Modeling Approach #### 1-D Neutronics Model Numerical Solvers All 1-D cases ran on each of the following numerical solvers: - OpenMC in continuous energy mode (OpenMC-CE) - OpenMC in multigroup mode (OpenMC-MG) - Neutron diffusion method (Moltres) - S₈ method (Moltres) - **6** Hybrid S_8 -diffusion method (Moltres) #### Reactivity & Reactivity Difference Reactivity $$\rho \equiv \frac{k_{\rm eff} - 1}{k_{\rm eff}}$$. (10) $$\Delta \rho = \rho_1 - \rho_2 = \frac{k_{\text{eff},1} - k_{\text{eff},2}}{k_{\text{eff},1} k_{\text{eff},2}}.$$ (11) ### Outline - 2 Theory & Methodology Introduction to Moltres Hybrid S_N-Diffusion Method 1-D Test Case Setup - $oldsymbol{\$}$ Results & Discussion $k_{ m eff}$ and Rod Worth Neutron Flux Distribution Impact of Correction Subregion Sizes S_N Convergence Tolerance - 4 Conclusion Conclusion References #### 1-D Neutronics Model Reactivity Results Figure 8: Difference in reactivity ρ of all neutronics methods investigated relative to OpenMC-CE. #### 1-D Neutronics Model Control Rod Worth Results Figure 9: Percentage difference in rod worth for Cases 2 and 3 of all neutronics methods investigated relative to OpenMC-CE. ### Case 3b Geometry Figure 10: Geometry of 1-D Case 3b. #### Case 3b Neutron Flux Distributions Figure 11: Absolute difference in neutron group flux distributions for Case 3b from Moltres- S_8 , Moltres-diffusion, and Moltres-hybrid relative to OpenMC-MG. The hybrid method provides more accurate flux estimates than the neutron diffusion method near x=0 cm where the control rod is situated. ### Impact of Correction Subregion Sizes on Rod Worth - Rod worth estimates vary non-monotonically with increasing correction subregion size. - Rod worth estimates remain within 0.2% of the S_8 method rod worth. - The hybrid method produces accurate rod worth estimates as long as the correction region size is kept consistent. Figure 12: Percentage difference in rod worth from the hybrid method relative to OpenMC-CE for Cases 3a and 3b with different correction subregion sizes. #### Relaxing the S_N Convergence Tolerance, ϵ_{tol} - Transport correction parameters converge faster than scalar flux in the S_N subsolver. - Relaxing the S_N subsolver convergence tolerance would provide computational savings. - The hybrid method exhibits superlinear (q = 1.333) convergence in k with respect to the S_8 convergence tolerance value. Table 2: Number of outer iterations in hybrid method calculations of Case 3b for a given set of convergence tolerance values imposed on the S_8 subsolver. | Tolerance value, ϵ_{tol} | 10^{-8} | 10^{-7} | 10^{-6} | 10^{-5} | 10^{-4} | 10^{-3} | |-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------| | No. of outer iterations | 3 | 3 | 3 | 2 | 2 | 1 | Figure 13: $k_{\rm eff}$ error estimates of Case 3b for a range of S_8 subsolver convergence tolerance values relative to the reference $k_{\rm eff}$ value when $\epsilon_{\rm tol}=10^{-8}$. ### Outline - 1 Introduction Motivation Objective - 2 Theory & Methodology Introduction to Moltres Hybrid S_N-Diffusion Method 1-D Test Case Setup - Results & Discussion k_{eff} and Rod Worth Neutron Flux Distribution Impact of Correction Subregion Size S_N Convergence Tolerance - 4 Conclusion Conclusion References ### Conclusion ### Hybrid S_N -Diffusion Method for time-dependent control rod modeling - Developed a hybrid S_N -diffusion method for control rod modeling in time-dependent simulations. - The method involves generating drift correction parameters around the control rod region using the S_N method. - The transport-corrected subregion size adaptively changes in response to the drift correction distributions. - 1-D results show the hybrid method improves rod worth and flux estimates over the diffusion method #### Extensions to this work - Extend the hybrid S_N -diffusion method to 2-D and 3-D models. (Completed) - Demonstrate time-dependent reactivity-initiated transients. (Completed) - Improve computational performance of the hybrid S_N -diffusion method. ### References I - R. C. Robertson, "MSRE DESIGN AND OPERATIONS REPORT. PART I. DESCRIPTION OF REACTOR DESIGN," English, Oak Ridge National Lab., Tenn., Tech. Rep. ORNL-TM-728, Jan. 1965. (visited on 03/27/2019). - A. Lindsay, G. Ridley, A. Rykhlevskii, and K. Huff, "Introduction to Moltres: An application for simulation of Molten Salt Reactors," en, Annals of Nuclear Energy, vol. 114, pp. 530–540, Apr. 2018. (visited on 01/08/2018). - [3] Y. Ronen, "Accurate Relations between the Neutron Current Densities and the Neutron Fluxes," en, Nuclear Science and Engineering, vol. 146, no. 2, pp. 245–247, Feb. 2004. [Online]. Available: https://www.tandfonline.com/doi/full/10.13182/NSE04-A2407 (visited on 07/19/2022). - [4] D. Tomatis, R. Gross, and E. Gilad, "On the Ronen Method in Simple 1-D Geometries for Neutron Transport Theory Solutions," Journal of Computational and Theoretical Transport, vol. 50, no. 2, pp. 134–157, Feb. 2021. [Online]. Available: https://doi.org/10.1080/23324309.2020.1843496 (visited on 077/20/2021). - [5] R. Gross, J. Cufe, D. Tomatis, and E. Gilad, "Comprehensive investigation of the Ronen method in slab geometry," Nuclear Engineering and Technology, vol. 55, no. 2, pp. 734–748, Feb. 2023. (visited on 06/14/2024). - [6] V. Y. Gol'din, "A quasi-diffusion method of solving the kinetic equation," USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 6, pp. 136–149, Jan. 1964. [Online]. Available: https://www.sciencedirect.com/science/article/pii/0041555364900850 (visited on 02/28/2024). - [7] A. Tamang and D. Y. Anistratov, "A Multilevel Projective Method for Solving the Space-Time Multigroup Neutron Kinetics Equations Coupled with the Heat Transfer Equation," *Nuclear Science and Engineering*, vol. 177, no. 1, pp. 1–18, May 2014. (visited on 04/03/2024). - [8] A. J. Reynolds and T. S. Palmer, "An Analysis of Transport Effects in Steady-State Simulation of the Molten Salt Reactor Experiment," Nuclear Science and Engineering, vol. 197, no. 1, pp. 45–73, Jan. 2023. [Online]. Available: https://doi.org/10.1080/00296539.2022.2097565 (visited on 02/17/2023). - [9] Y. Wang, S. Schunert, M. DeHart, R. Martineau, and W. Zheng, "Hybrid PN-SN with Lagrange multiplier and upwinding for the multiscale transport capability in Rattlesnake," Progress in Nuclear Energy, Special Issue on the Physics of Reactors International Conference PHYSOR 2016: Unifying Theory and Experiments in the 21st Century, vol. 101, pp. 381–393, Nov. 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0149197017300653 (visited on 05/01/2024). - [10] D. Y. Anistratov and N. D. Stehle, "Computational transport methodology based on decomposition of a problem domain into transport and diffusive subdomains," Journal of Computational Physics, vol. 231, no. 24, pp. 8099–8028, Oct. 2012. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021999112003154 (visited on 04/30/2024). - [11] N. D. Stehle, D. Y. Anistratov, and M. L. Adams, "A hybrid transport-diffusion method for 2D transport problems with diffusive subdomains," *Journal of Computational Physics*, vol. 270, pp. 325–344, Aug. 2014. (visited on 04/30/2024). - [12] Y. Wang, H. Zhang, and R. C. Martineau, "Diffusion Acceleration Schemes for Self-Adjoint Angular Flux Formulation with a Void Treatment," Nuclear Science and Engineering, vol. 176, no. 2, pp. 201–225, Feb. 2014. (visited on 06/10/2024). - [13] D. A. Knoll and D. E. Keyes, "Jacobian-free Newton-Krylov methods: A survey of approaches and applications," en, Journal of Computational Physics, vol. 193, no. 2, pp. 357–397, Jan. 2004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0021999103004340 (visited on 01/15/2014). - [14] hypre, Hypre: High Performance Preconditioners, 2022. [Online]. Available: https://llnl.gov/casc/hypre. - [15] M. Jaradat, "Development of Neutronics Analysis Capabilities for Application of Flowing Fuel Molten Salt Reactors," en, Thesis, University of Michigan, 2021. [Online]. Available: http://deepblue.llb.umich.edu/handle/2027.42/171425 (visited on 07/15/2024). - [16] M. O. Fratoni, D. Shen, J. Powers, and G. Ilas, "Molten Salt Reactor Experiment Benchmark Evaluation," English, Univ. of California, Berkeley, CA (United States), Tech. Rep. DOE-UCB-8542, Mar. 2020. [Online]. Available: https://www.osti.gov/biblio/1617123 (visited on 07/15/2021). - [17] B. Prince, S. Ball, J. Engel, P. Haubenreich, and T. Kerlin, ZERO-POWER PHYSICS EXPERIMENTS ON THE MOLTEN-SALT REACTOR EXPERIMENT. Jan. 1968. ### Hybrid S_N -Diffusion Method: Theory #### Weak Formulation of the Multigroup SAAF S_N Equations Streaming term: $$\sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\hat{\Omega}_d \cdot \nabla \Psi_{g,d}^*, \tau_g \hat{\Omega} \cdot \nabla \Psi_{g,d} - (1 - \tau_g \Sigma_{t,g}) \Psi_{g,d} \right)_{\mathcal{D}}$$ (12) Collision term: $$\sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\Psi_{g,d}^*, \Sigma_{t,g} \Psi_{g,d} \right)_{\mathcal{D}}$$ (13) Scattering term: $$\sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\Psi_{g,d}^* + \tau_g \hat{\Omega}_d \cdot \nabla \Psi_{g,d}^*, \sum_{g'=1}^{G} \sum_{l=0}^{L} \sum_{s,l}^{g' \to g} \sum_{m=-l}^{l} \frac{2l+1}{w} Y_{l,m}(\hat{\Omega}_d) \phi_{g',l,m} \right)_{\mathcal{D}}$$ (14) Fission source term: $$\sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\Psi_{g,d}^* + \tau_g \hat{\Omega}_d \cdot \nabla \Psi_{g,d}^*, \frac{1}{w} \frac{\chi_{p,g} (1-\beta)}{k} \sum_{g'=1}^{G} \nu \Sigma_{f,g'} \phi_{g'} \right)_{\mathcal{D}}$$ (15) ### Hybrid S_N -Diffusion Method: Theory #### Weak Formulation of the Multigroup SAAF S_N Equations Delayed neutron source term: $$\sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\Psi_{g,d}^* + \tau_g \hat{\Omega}_d \cdot \nabla \Psi_{g,d}^*, \frac{1}{w} \sum_{i=1}^{I} \chi_{d,g} \lambda_i C_i \right)_{\mathcal{D}}$$ (16) Boundary source term: $$\begin{cases} \sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\Psi_{g,d}^*, \hat{\Omega}_d \cdot \hat{n}_b \Psi_{g,d} \right)_{\partial \mathcal{D}}, & \hat{\Omega} \cdot \hat{n}_b > 0, \vec{r} \in \partial \mathcal{D} \\ \sum_{g=1}^{G} \sum_{d=1}^{N_d} w_d \left(\Psi_{g,d}^*, \hat{\Omega}_d \cdot \hat{n}_b \Psi_{g,d}^{\text{trip}} \right)_{\partial \mathcal{D}}, & \hat{\Omega} \cdot \hat{n}_b < 0, \vec{r} \in \partial \mathcal{D} \end{cases}$$ (17) Reflecting boundary term: $$\begin{cases} \sum_{g=1}^{G} \sum_{d=1}^{N_{d}} w_{d} \left(\Psi_{g,d}^{*}, \hat{\Omega}_{d} \cdot \hat{n}_{b} \Psi_{g,d} \right)_{\partial \mathcal{D}}, & \hat{\Omega} \cdot \hat{n}_{b} > 0, \vec{r} \in \partial \mathcal{D}_{s} \\ \sum_{g=1}^{G} \sum_{d=1}^{N_{d}} w_{d} \left(\Psi_{g,d}^{*}, \hat{\Omega}_{d} \cdot \hat{n}_{b} \Psi_{g,d_{r}} \right)_{\partial \mathcal{D}}, & \hat{\Omega} \cdot \hat{n}_{b} < 0, \vec{r} \in \partial \mathcal{D}_{s} \end{cases}$$ $$(18)$$ ### Hybrid S_N -Diffusion Method: Theory #### Weak Formulation of the Multigroup SAAF S_N Equations Void stabilization parameter [12]: $$\tau_g = \begin{cases} \frac{1}{c\Sigma_{t,g}} & \text{for } ch\Sigma_{t,g} \ge \varsigma \\ \frac{h}{\varsigma} & \text{for } ch\Sigma_{t,g} < \varsigma \end{cases} , \tag{19}$$ where h = mesh element size, c = maximum stabilization factor, $\varsigma = \text{void constant}.$ c=1 and $\varsigma=0.5$ by default. The SAAF- S_N equations require this stabilization scheme in near-void regions where $\Sigma_{t,g}$ is very small. ## 1-D Neutronics Model Mesh Convergence Tests Figure 14: Convergence of multiplication factor ($k_{\rm eff}$) estimates for Case 3b across four levels of mesh refinement relative to the finest mesh resolution. Figure 15: Case 3a neutron group flux distributions from OpenMC-CE and OpenMC-MG. Figure 16: Case 3b neutron group flux distributions from OpenMC-CE and OpenMC-MG. #### Case 3a Neutron Flux Distributions - The neutron diffusion and hybrid methods fare worse than the S₈ method at capturing the oscillatory flux pattern. - The hybrid method performs better than the neutron diffusion method near x = 0 cm where the correction region is situated. Figure 17: Absolute difference in neutron group flux distributions for Case 3a from Moltres- S_8 , Moltres-diffusion, Moltres-hybrid, and Python-hybrid relative to OpenMC-MG. Figure 18: Multigroup drift correction (\vec{D}_g) x-component distributions from the Moltres-hybrid and Moltres- S_8 solvers. ## Hybrid S_N -Diffusion Method: 1-D Neutronics Eigenvalue Simulations #### Impact of Correction Subregion Sizes on k - Minimizing the correction region size is essential for the hybrid method to be computationally efficient for time-dependent simulations. - k varies by up to 164 pcm for Case 3a and 109 pcm for Case 3b. - The hybrid method k value does not converge monotonically towards the S₈ method k value, implying other sources of discrepancies. Figure 19: $k_{\rm eff}$ estimates from the hybrid method for Cases 3a and 3b with different correction subregion sizes. The horizontal lines indicate $k_{\rm eff}$ estimates from the OpenMC-CE, OpenMC-MG, and $S_{\rm R}$ methods. ## 2-D Neutronics Quarter-Core & Full-Core MSRE Models Figure 20: 2-D MSRE quarter-core model based on the horizontal cross section of the actual MSRE geometry. Figure 21: 2-D MSRE full-core model based on the horizontal cross section of the actual MSRE geometry. #### 2-D Quarter-Core k & Rod Worth Results Table 3: $k_{\rm eff}$ and control rod worth estimates for the 2-D quarter-core MSRE model. Error values are relative to OpenMC-CE. | Method | No Rod | | Ro | od | Rod worth | | | |-----------|--------------|-------------|--------------|-------------|-------------------------------|-------------|--| | Method | k_{eff} | Error [pcm] | k_{eff} | Error [pcm] | $\Delta ho_{ m worth}$ [pcm] | Error [pcm] | | | OpenMC-CE | 1.11209(43) | - | 1.017 40(42) | _ | 8370(53) | - | | | OpenMC-MG | 1.119 79(42) | 618 | 1.022 04(41) | 446 | 8541(51) | 172 | | | Diffusion | 1.120 59 | 682 | 1.009 03 | -816 | 9867 | 1484 | | | Hybrid | 1.12174 | 773 | 1.025 32 | 760 | 8383 | 13 | | \Rightarrow The hybrid method produces accurate rod worth estimates while the neutron diffusion method significantly overestimates rod worth. #### Control Rod Withdrawn # 1.4 1.2 0.8 Legend: % Error (Diffusion) % Error (Hybrid) Figure 22: Normalized channel fission rate distribution of the 2-D MSRE quarter-core model with the rod withdrawn. #### **Control Rod Inserted** Figure 23: Normalized channel fission rate distribution of the 2-D MSRE quarter-core model with the rod inserted. #### 2-D Quarter-Core Normalized Channel Fission Rate Distribution Table 4: Absolute mean and maximum percentage errors in the normalized channel fission rates of the 2-D MSRE quarter-core models relative to OpenMC. The mean relative standard deviation of OpenMC normalized channel fission rates is 0.20%. | Method | N | o Rod | Rod | | | |-----------|----------|-------------|----------|-------------|--| | | Mean [%] | Maximum [%] | Mean [%] | Maximum [%] | | | Diffusion | 0.40 | 2.63 | 2.01 | 17.44 | | | Hybrid | 0.40 | 1.32 | 0.43 | 3.08 | | - The hybrid method improves channel fission rate estimates, especially for the rodded case. - Significant improvement in maximum percentage error of the channel fission rate. #### 2-D Full-Core Rod Worth Results Table 5: Control rod worth estimates for the 2-D full-core MSRE with the indicated rods inserted. Error values are relative to OpenMC-CE. | Method | Rod 1 | | Rod 1 | & 2 | Rod 1, 2 & 3 | | | |-----------|-------------------------------|-------------|-------------------------------|-------------|-------------------------------|-------------|--| | Method | $\Delta ho_{ m worth}$ [pcm] | Error [pcm] | $\Delta ho_{ m worth}$ [pcm] | Error [pcm] | $\Delta ho_{ m worth}$ [pcm] | Error [pcm] | | | OpenMC-CE | 2450(25) | - | 4494(23) | - | 6357(24) | - | | | OpenMC-MG | 2523(23) | 73 | 4640(24) | 146 | 6455(22) | 98 | | | Diffusion | 3019 | 569 | 5439 | 945 | 7519 | 1162 | | | Hybrid | 2455 | 5 | 4521 | 27 | 6323 | -34 | | \Rightarrow The hybrid method remains effective at improving control rod worth estimates in the full-core model #### 2-D Full-Core Normalized Channel Fission Rate Distribution Table 6: Absolute mean and maximum percentage errors in the normalized channel fission rates of the 2-D MSRE full-core models relative to OpenMC. The mean relative standard deviation of OpenMC normalized channel fission rates is 0.27%. | Method | | lo Rod
Maximum [%] | - | Rod 1
Maximum [%] | | d 1 & 2
Maximum [%] | | 1, 2 & 3
Maximum [%] | |-----------|------|-----------------------|------|----------------------|------|------------------------|------|-------------------------| | Diffusion | 0.45 | 2.95 | 0.94 | 12.61 | 1.35 | 15.34 | 1.67 | 17.09 | | Hybrid | 0.43 | 1.45 | 0.43 | 1.82 | 0.43 | 2.26 | 0.43 | 2.52 | - Mean percentage error for the hybrid method remains consistent at 0.43%. - Significant improvement in maximum percentage error of the channel fission rate. Figure 24: Group 1 and 2 neutron flux distributions in the hybrid S_N -diffusion method correction region with S_6 , S_8 , S_{10} , & S_{12} . Figure 25: Group 3 and 4 neutron flux distributions in the hybrid S_N -diffusion method correction region with S_6 , S_8 , S_{10} , & S_{12} . ## 3-D MSRE Full-Core Model Figure 26: Vertical cross section of the actual MSRE vessel. Figure 27: Vertical cross section of the 3-D numerical MSRE model offset by 5.08 cm to show the control rod thimble and homogenized sample basket. $$_{\rm 30/30}$$ ## 3-D MSRE Neutronics Modeling Approach #### 3-D Full-Core MSRE Model Details - Hybrid S₆-diffusion method - Eight neutron energy groups - ²³⁵U concentration at initial criticality - Uniform temperature at 911 K All hybrid method results are compared with MSRE experimental data, the MSRE numerical benchmark report data (Serpent 2 model) [16], and the OpenMC model in this work. Figure 28: 3-D section view of the 3-D numerical MSRE model showing the three control rod thimbles and the fuel-graphite lattice. #### MSRE at Initial Criticality Table 7: $k_{\rm eff}$ values from MSRE experimental data, the MSRE numerical benchmark [16], and the OpenMC and Moltres models in this work. | Source | $k_{ m eff}$ | |---------------------------------|---------------| | MSRE experimental data | 1.000 00(420) | | Serpent 2 (Numerical benchmark) | 1.021 32(3) | | OpenMC (This work) | 1.01308(20) | | Hybrid (This work) | 1.019 57 | | Diffusion (This work) | 1.01885 | $[\]Rightarrow$ The hybrid and neutron diffusion models agree with the Serpent 2 and OpenMC models within 700 pcm. #### **MSRE Rod Worth Measurements** Figure 29: Reactivity inserted by Rod 1 at various rod positions relative to the full insertion. #### **Strong Scaling Test** Performed a strong scaling test on the 3-D quarter-core MSRE model on 10, 20, 40, and 80 compute nodes. The S_N and diffusion subsolvers scale well throughout the test. The S_N -diffusion data transfer processes scale poorly beyond 40 nodes. Figure 30: The total, solver, and transfer wall time of hybrid method simulations of the 3-D quarter-core model on 10, 20, 40, and 80 compute nodes (32 processors per node) of the Polaris supercomputer. All axes are in log scale. Introduction Theory & Methodology Results & Discussion Conclusion References Figure 31: 3-D section view of the MSRE model geometry with Rod 1 inserted by 4.4 inches at initial criticality. Figure 32: Group 1 neutron flux distribution with Rod 1 inserted by 4.4 inches at initial criticality. Figure 33: Group 8 neutron flux distribution with Rod 1 inserted by 4.4 inches at initial criticality. Introduction Theory & Methodology Results & Discussion Conclusion References Figure 34: Group 1 neutron flux distribution with Rod 1 inserted by 27.5 inches. Figure 35: Group 8 neutron flux distribution with Rod 1 inserted by 27.5 inches. Introduction Theory & Methodology Results & Discussion Conclusion References Figure 36: Group 1 neutron flux distribution with Rod 1 inserted by 51 inches. Figure 37: Group 8 neutron flux distribution with Rod 1 inserted by 51 inches. ## I ## Time-Dependent Simulations with the Hybrid Method Time-dependent reactivity-initiated simulation based on an MSRE rod drop experiment. #### **MSRE Rod Drop Experiment** - Neutronic response of an initially critical, zero-power MSRE to a rod drop of Rod 1 [17] - Corresponds to a reactivity withdrawal of -1500 pcm - · Requires delayed neutron precursor (DNP) modeling - Induces a prompt response, followed by a delayed response, in the neutron count rate ## MSRE Rod Drop Simulation Results #### **Neutron Count Rate Following Rod Drop** Figure 38: Neutron count rate during the rod drop experiment from Moltres rod drop simulation. - Steep initial decline in neutron count rate as the rod drops - Decline in neutron count rate slows at t = 0.5 s due to presence of DNPs - Convergence issues prevented the simulation from converging from t = 0.8 s - Raised the convergence tolerance value after t = 0.8 s to help the simulation continue ## MSRE Rod Drop Simulation Results #### Integral Neutron Count Following Rod Drop Figure 39: Integral neutron count during the rod drop experiment from MSRE experimental data and hybrid method numerical results. - Moltres reproduces the expected trend in the integral neutron count rate. - Slight underprediction relative to MSRE rod drop experimental data - Underprediction may be due to experimental uncertainty in ²³⁵U concentration, initial & final rod height, initial neutron count rate. ## 3-D Modeling with the Hybrid Method #### **Difficulties Faced During 3-D Modeling** - Slow convergence rate relative to 1-D & 2-D modeling - Likely due to increased streaming effects in 3-D near-void (air) regions in the reactor - Significant memory requirements - Lagged control rod positions in fixed point iterations affecting convergence in time-dependent simulations ⇒ simulation requires smaller timestep sizes ## MSRE Rod Drop Simulation Interpolated Results #### **Neutron Count Rate** Figure 40: Neutron count rate during the rod drop experiment with linearly interpolated data between t = 1.325 s and t = 3.825 s. ## **Integral Neutron Count** Figure 41: Integral neutron count during the rod drop experiment with linearly interpolated count rate data between t = 1.325 s and t = 3.825 s ## Rod Cusping Correction Figure 42: Fraction of reactivity change against control rod volume fraction in mixed mesh elements with the rod inserted at mid-reactor height (27.4 to 29.4 inches) and full insertion height (0.0 to 1.9 inches).