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Presentation Overview

● Intro to Moltres/MOOSE
● Moltres goals
● Results:

– 3D unstructured: temperature coupling 
issues

– 2D axisymmetric: good steady-state profiles
– 3D structured: steady-state neutron and 

precursor profiles; incomplete conduction 
between fuel and moderator

● Future work
– Transients
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Obtaining Moltres

● git clone https://github.com/arfc/moltres
● cd moltres
● git submodule init
● git submodule update

https://github.com/arfc/moltres
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Moltres/MOOSE
● Moltres is built on top of the Multi-physics Object-Oriented 

Simulation Environment (MOOSE): 
● MOOSE interfaces with libMesh to discretize simulation volume 

into finite elements
● Provides interface for coding residuals that correspond to weak 

form of governing PDEs; also interface for coding Jacobians → 
more accurate Jacobians → more efficient convergence

● Residuals and Jacobians handed off to PetSc which handles 
solution of resulting non-linear system of algebraic equations

Moltres:
Describe MSR 
governing 
equations with 
residual 
functions 

PetSc:
Solve algebraic 
system of 
equations using 
Newton 
methods

MOOSE & LibMesh:
Discretize physics 
via the finite element 
method. PDEs → 
algebraic system of 
equations
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Moltres Kernels
● In MOOSE jargon, 

kernels are individual 
pieces of governing 
equations

● Modular in nature; for 
example, a “Diffusion” 
kernel could be used 
equally well to 
describe conduction 
or viscous shear
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Moltres Kernels
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Governing Equations
● Piece together the kernels:

– Multi-group diffusion
– Precursor balance with drift
– Heat conduction-convection with fission source in fuel
– Heat conduction with option for irradiation source in moderator
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Example Literature MSR Multi-Physics

● Cammi Ann. of Nuc. 
Energy 38 (2011) 
1356

● Single channel
● Reflective/insulating 

conditions at radial 
boundary for 
neutrons/temperature

● Variables: velocity (ur, 
uz), fluxes (2 group), 
temperature, 
precursor conc.

Concurrent efforts in Italy, Switzerland, DOE lab, UCB, and others
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Goals
● Current: 

– demonstrate steady-state coupling of neutron 
fluxes, precursors, and temperature for 
thermal MSR design

● Future: 
– investigate reactor dynamics under transient 

accident scenarios to assess safety
– explore salt processing and chemistry
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Problem Set-Up
● Base current model on Molten Salt Reactor Experiment
● 22.5% volume fraction fuel
● Remainder graphite
● Fuel salt: Fluoride Lithium Beryllium (FLiBe) with 33% enriched 

Uranium
● Generate group constants with Serpent or Newt
● Moltres builds neutronics with action so accepts arbitrary number 

of groups; however, all results presented here will be for two 
groups

Component Mass Fraction

Li-7 .1090

Li-6 5E-6

F-19 .6680

Be-9 .0627

U-235 .0167

U-238 .0344
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Action System: 
Simplified Input

`
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3D Geometry
● Start with 

simple cuboid 
lattice

● Red regions 
fuel

● 5 cm pitch
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Mesh Construction

● Repeating 
structure, block 
and boundary 
IDs,  generated 
using gmsh
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k-eigenvalue simulation; reactor 
axial mid-plane

T = 922 K; k = 1.002



15

Issues when Coupling in Temperature

Moderator temperatures next to highest 
fissioning fuel regions drop below inlet 
temperature of 922 K
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Boundary Shocks

● Over 1 million 
elements in 
simulation, but 
only one 
internal node 
spans radial 
moderator 
dimension
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Boundary Shocks

● Can see identical 
phenomena in 
simple Transient-
Diffusion problem 
with quickly 
ramped boundary 
values
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Moving Forward
● Move to simplified 2D-axisymmetric 

formulation, using same group 
constants and maintaining correct fuel-
moderator volume fractions

● Structured mesh: allows much finer 
meshing in radial direction where 
gradients are much larger

● Return later to 3D problem, again using 
structured mesh
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2D-axi geometry
● Repeating (narrow) 

fuel – (wide) 
moderator regions

z

r Vacuum nts;
T = 922;
Pre = 0 (inlet)

Vacuum nts;
T = 922 
(downcomer 
cooling)

axis
of 

symmetry

Vacuum nts;
T, Pres: 
OutflowBC

fuel

graphite

Mesh
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Results (neutrons)
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Results (temperature)
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Results (precursors)
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New 3D Results
● Lessons learned from 2D-axisymmetric 

case: using structured 3D mesh, can 
evolve close to steady-state without 
observing boundary shocks

● Over heat conduction time scales, 
convergence slow
– Unsure why

● Simulation run on 160 processors on 
Illinois’s Blue Waters supercomputer
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Results (neutrons)

Fast Thermal



25

Results (temperature)
● Not simulated out 

to long enough 
times for heat to 
finish conducting 
from fuel to 
moderator

● End time = 17 
seconds

● Characteristic 
diffusion time 
through 
moderator = 24 
seconds
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Results (precursors)

Longest lived precursor Shortest lived precursor
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Moltres Summary/Future Work
● Good coupling with fine meshing in 2D
● Some good 3D results; slow 

convergence at long time scales
● Next:

– Instead of assuming constant, couple in 
flow variables

– Start exploring transients, e.g. explore 
responses to reactivity insertion

– Implement cross section dependence on 
control rods
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Moltres Summary/Future Work
● Presented preliminary results
● Still a bit to go to replicate state-of-the-

art multi-physics simulation capabilities
● However, we hope use of modern 

development practices will accelerate 
growth and assist in review and 
transparency
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GitHub with Continuous Integration

Wiki with User Guides

Doxygen pages for 
helping new developers
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