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We trained a neural network model to predict Pressurized Water Reactor (PWR) Used Nuclear Fuel (UNF)
composition given initial enrichment and burnup. This quick, flexible, medium-fidelity method to esti-
mate depleted PWR fuel assembly compositions is used to model scenarios in which the PWR fuel burnup
and enrichment vary over time. The Used Nuclear Fuel Storage, Transportation & Disposal Analysis
Resource and Data System (UNF-ST&DARDS) Unified Database (UDB) provided a ground truth on which
the model trained. We validated the model by comparing the U.S. UNF inventory profile predicted by the
model with the UDB UNF inventory profile. The neural network yields less than 1% error for UNF inven-
tory decay heat and activity and less than 2% error for major isotopic inventory. The neural network
model takes 0.27 s for 100 predictions, compared to 118 s for 100 Oak Ridge Isotope GENeration
(ORIGEN) calculations.
We also implemented this model into CYCLUS, an agent-based Nuclear Fuel Cycle (NFC) simulator, to per-

form rapid, medium-fidelity PWR depletion calculations. This model also allows discharge of batches
with assemblies of varying burnup.
Since the original private data cannot be retrieved from the model, this trained model can provide

open-source depletion capabilities to NFC simulators. We show that training an artificial neural network
with a dataset from a complex fuel depletion model can provide rapid, medium-fidelity depletion capa-
bilities to large-scale fuel cycle simulations.

Published by Elsevier Ltd.
1. Introduction

1.1. Background and motivation

The NFC is a complex system of facilities and material mass
flows that combine to provide nuclear energy, usually in the form
of electricity (Yacout et al., 2005). NFC simulators are system anal-
ysis tools used to investigate issues related to the dynamics of a
nuclear fuel cycle in both high and low-resolution. An example of
a high-resolution element is the spent fuel isotopic composition
from a single fuel bundle, and an example of a low-resolution ele-
ment is the total fuel utilization in the system. The intention
behind the use of NFC simulators is to develop a better understand-
ing of the dependence between various components in the system
and the effects of changes on the system. Their goal is to assist in
evaluating and improving potential strategies for nuclear power
development in terms of improving waste management, economic
competitiveness, etc. (Yacout et al., 2005).

One of the major functionalities of an NFC simulator is its ability
to transmute nuclear fuel in a reactor based on reactor conditions
such as burnup, enrichment, etc. The transmutation results impact
the accuracy of the UNF composition, and thus the capability of
using the NFC to analyze the impact of an NFC on variables such
as waste profile.

Current fuel cycle simulators include CYCLUS (Huff et al., 2016),
DYMOND (Yacout et al., 2005), VISION (Jacobson et al., 2010),
ORION (Gregg and Grove, 2012), COSI (Coquelet-Pascal et al.,
2015), and CLASS (Mouginot et al., 2012), NFC simulators obtain
transmutation results using various methods. Four types of meth-
ods to obtain transmutation results exist: recipe-based, library-
based, spectral, and dynamic coupling methods. In recipe-based
methods, direct neutronics calculations are not performed within
the model, they are done externally (Yacout et al., 2006). The user
inputs resulting fresh and spent fuel compositions for specific
parameters directly into the NFC model (Sunny et al., 2015). In
the library-based method, the NFC simulator dynamically calcu-
lates depleted fuel recipes by interpolating reactor data libraries
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generated by reactor physics burnup calculation code such as SER-
PENT (Leppanen et al., 2015), Oak Ridge Isotope GENeration (ORI-
GEN) (Croff, 1980), etc. In spectral methods, a reactor model that
incorporates spectral changes as a function of burnup is used
(Scopatz et al., 2011). In dynamic coupling methods, a Fuel Cycle
Simulator (FCS) is coupled with a reactor physics depletion code
and a depletion calculation is conducted during an NFC simulation
to obtain time-dependent transmutation results.

Table 1 shows a simple breakdown of the transmutation meth-
ods available for each NFC code.

CYCLUS has three methods to obtain spent fuel compositions: the

CYCAMORE recipe reactor (Huff et al., 2014), CyBORG (Skutnik et al.,
2016), and Bright-lite (Flanagan, 2014). The CYCAMORE recipe reactor
accepts a fresh and spent fuel recipe that is defined by the user.
CyBORG uses ORIGEN to dynamically calculate depleted fuel
recipes by interpolating ORIGEN reactor data libraries to
problem-specific conditions including initial enrichment, burnup,
and user-specified interpolation parameters (Skutnik et al., 2016).
Bright-lite uses an interpolated transmutation matrix approach
with pre-configured libraries available for multiple commercial
reactor types (Flanagan, 2014). This is a spectral type transmuta-
tion method. ORION has a recipe-based and library-based method
to obtain transmutation results. In ORION’s library-based method,
burnup-dependent cross-section libraries for multiple reactor
types with multiple initial fuel enrichment are generated before
ORION analysis (Sunny et al., 2015). The libraries are then used
to generate spent fuel recipes based on reactor conditions such
as burnup, enrichment, etc. DYMOND has a recipe-based method
in which recipes for both the input and output fuel compositions
are externally calculated. Isotopes are tracked in lumped cate-
gories: fission products, minor actinides, uranium and plutonium
(Feng et al., 2016). VISION has a recipe-based method with a lim-
ited set of individually tracked isotopes (Yacout et al., 2006).

For NFC simulators, striking a balance between fidelity and
computational cost is a key issue. The advantage of using high fide-
lity models (dynamic coupling methods) is their inherent flexibil-
ity to readily accommodate varying fuel compositions when
modeling complex scenarios (Sunny et al., 2015). However, using
high fidelity models for century-long simulations can result in
impractical computational times. The advantage of using low fide-
lity models (recipe-based methods) is the low computational cost.
They are acceptable methods for modeling fuel cycles with fixed
input composition or fuel cycles at equilibrium (Sunny et al.,
2015). However, for fuel cycles not at equilibrium, they result in
less accurate results.

Therefore, to find a middle ground of accurate depletion data
while maintaining a practical computational cost, this paper intro-
duces a trained dense neural network model that is able to predict
PWR UNF composition based on initial enrichment and burnup.

1.2. Previous work

In 2015, Leniau et al. (2015) used neural networks for modeling
Mixed Oxide Fuel (MOX) in the NFC simulator CLASS. They success-
Table 1
Methods for transmutation in reactor modules for each NFC simulation code.

NFC code Transmutation Methods Available

Cyclus (Huff et al., 2016) Recipe-based, library-based,
spectral, and dynamic-coupling

ORION (Gregg and Grove, 2012) Recipe-based and library-based
DYMOND (Yacout et al., 2005) Recipe-based
VISION (Jacobson et al., 2010) Recipe-based
COSI (Coquelet-Pascal et al., 2015) Recipe-based, library-based, and

dynamic coupling
CLASS (Mouginot et al., 2012) Library-based
fully demonstrated an application of neural networks to predict
plutonium fraction in a fresh MOX fuel required to reach a specific
burnup, as well as to predict mean cross section for depletion cal-
culations. This work differs from the work by Leniau et al., since it
predicts Uranium Oxide Fuel (UOX) fuel depletion, and the neural
network predicts the depleted compositions directly, which elimi-
nates the need to solve the Bateman equations. Also, we further
extend the concept pioneered by Leniau et al. by using the trained
neural network to predict a time-aggregated UNF inventory, and
comparing the inventory with a pre-existing database. Lastly, this
work implements the neural network to a reactor model to simu-
late dynamic (burnup, enrichment) reactor behavior.

1.3. CYCLUS

CYCLUS is an agent-based nuclear fuel cycle simulation frame-
work (Huff et al., 2016), meaning that each reactor and fuel cycle
facility is modeled as a discrete and independent player in the sim-
ulation. A CYCLUS agent archetype defines the logic that governs the
behavior of an agent. CYCLUS archetypes are implemented in either C
++ or Python. In a simulation, the user defines the archetype’s
parameters. The archetypes with user-defined parameters are then
deployed as agent prototypes. Encapsulating the Facility agents
are the Institution and Region. A Region agent holds a set of
Institutions. An Institution agent can deploy or decommis-
sion Facility agents.

At each timestep, agents make requests for materials or bid to
supply them and exchange with one another. A market-like mech-
anism called the Dynamic Resource Exchange (Gidden and Wilson,
2016) governs the exchanges. For output analysis, each material
resource has a quantity, composition, name, and a unique
identifier.

Cyclus has multiple advantages over other available NFC simu-
lation codes including open-source distribution, modularity, and
extensibility. Its agent-based modeling approach is ideal for mod-
eling coupled, physics-dependent supply chain problems common
in NFCs. The framework allows for dynamic loading of external
libraries, so that users can plug-and-play various physics models
for NFC facility processes (shown in Fig. 1).

1.3.1. Modularity and extensibility
In most modern NFCs simulators, the facilities and their behav-

iors are confined in the software. Also, typical NFC simulators
model fuel cycles (e.g. once-through, continuous reprocessing)
with immutable connections between facilities. On the other hand,
facilities in CYCLUS are not limited in their connections, due to its
modular framework. This enables CYCLUS to simulate any system
involving multiple connected facilities with physics-based
calculations.

Due to this modularity in the CYCLUS framework, the developed
model in this work is implemented independently without having
to modify the CYCLUS source code. The new facility archetype is writ-
ten in Python and implemented through the CYCLUS API.
2. Method

This work follows four steps:

1. Data curation
2. Model training (with hyperparameter optimization)
3. Model validation
4. Model implementation in CYCLUS

First, we curated the assembly information data for ease of use
in training the model (Section 2.1.1). Second, we trained the dense
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Fig. 1. The CYCLUS core provides APIs that the archetypes can be loaded into the simulation modularly (Huff et al., 2016).
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neural network using Keras (Chollet et al., 2015) and Scikit-learn
(Pedregosa et al., 2011). This workflow incorporated an outer loop
to search for the optimized set of neural network hyperparameters,
such as the number of hidden layers and nodes per layer. Third, we
used the model to predict the U.S. UNF inventory as specified in the
UDB and compare UNF inventory metrics such as fissile content
and decay heat. Lastly, we implemented the trained model in

CYCLUS by developing a reactor facility archetype that transmutes
fuel using the model.

The files used to generate and test the dense network model are
all on Github (Bae et al., 2019). The raw data is not available to the
public.

2.1. Training set

In order to train an artificial neural network model, a significant
database of depletion data is needed that spans the potential bur-
nup and enrichment range in the reactor types involved in the fuel
cycle simulation.

Data from the UDB was used to train the model based on bur-
nup and enrichment.

We simply used all the PWR datasets in the UDB, and the input
values are only burnup and initial enrichment. Ideally, the data
should be generated with the same reactor parameters other than
burnup and enrichment, such as lattice geometry. However, the
database is generated with varying assembly geometries.

2.1.1. Unified database
The UDB 1 is part of a larger engineering analysis tool, the Used

Nuclear Fuel Storage, Transportation & Disposal Analysis Resource
and Data System (UNF-ST&DARDS), developed by Oak Ridge
National Laboratory (ORNL) (Peterson et al., 2013). The database pro-
1 We received the database through personal communication with Dr. Kaushik
Banerjee (ORNL).
vides a comprehensive, controlled source of spent nuclear fuel (SNF)
information, including dry cask attributes, assembly data, economic
attributes, transportation infrastructure attributes, potential future
facility attributes, and federal government radioactive waste attri-
butes. The assembly-specific attributes include initial enrichment,
burnup, metric tons of heavy metal (MTHM), assembly type, and dis-
charge date (Peterson and Scaglione, 2015). To generate this data-
base, the authors used irradiation and decay calculations using
SCALE (Bowman, 2011). The calculations were performed on each
spent fuel assembly based on the previously mentioned parameters
in the collected data to obtain mass, heat, and activity for each
assembly (Peterson et al., 2017). All the assemblies were modeled
with conservative depletion parameters which result in the harden-
ing of the neutron energy spectrum and an increased SNF residual
reactivity (Peterson et al., 2017).

Also, the irradiation history of the fuel is unspecified in the
database, which can be a source of deviation for short-lived iso-
topes. With the unknown parameters (unknown irradiation his-
tory, varying assembly models) and assumptions (conservative
composition to increase fuel reactivity), the database is far from
ideal to use as a training dataset for a depletion calculation model.
However, we chose this data set because it allows testing of model
performance through comparison of UNF inventory between a
high-fidelity model and a model prediction for varying burnup,
enrichment, and discharge time.
2.2. Data curation

We curated the raw UDB datasets to generate a cleaner training
set. First, we only used the PWR assemblies since Boiling Water
Reactor (BWR) UNF assembly calculation results can vary signifi-
cantly with void fraction. We also filtered out the ‘very low’ enrich-
ment (61.5) and burnup (610,000 MWd/MT) assemblies to
represent a more modern PWR UNF assembly range. Fig. 2 shows
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the burnup and enrichment distribution of the assemblies in the
UDB.

Notably, since the SCALE calculations in the UDB only track 60
isotopes, 3.5 weight percent of the UNF is unaccounted for, on
average. We aggregate the isotopes not accounted for as a separate
category. Lastly, we processed the database so that the isotopic
compositions are represented as weight % normalized by initial
uranium mass. For every isotope i:

xi ¼ mi

MinitU
ð1Þ

where:

xi ¼ Percent weight of isotope in depleted assembly
mi ¼ Mass of isotope in depleted assembly in UDB
MinitU ¼ Mass of initial uranium in assembly
2.3. Predictive models for fuel depletion

UNF depleted composition prediction is complex due to the
varying relationship with the fuel parameters. In Figs. 3–5, we
Fig. 3. 137Cs composition in a UNF assembly

Fig. 2. Burnup and enrichment distribution of training datasets curated from the
UDB.
observe the relationship between burnup, enrichment, and isotopic
composition.

We observed that, if the isotopic population is mainly deter-
mined by the fission of initial uranium, a linear regression algo-
rithm can be used to predict the isotopic composition from
burnup (137Cs shown in Fig. 3). However, isotopes like 239Pu
(Fig. 4) have multiple, conflicting creation and destruction terms,
making it harder to predict using a linear regression algorithm.
Also, the 235U (Fig. 5) composition depends on both burnup and
enrichment, which can make it hard to predict using a simple lin-
ear model.

Due to these complexities, we decided to train an artificial
dense neural network for our predictive model. We chose Keras
(Chollet et al., 2015) to create and validate the model, as well as
scikit-learn (Pedregosa et al., 2011) and pandas (McKinney, 2010)
for data processing and management.

2.4. Training and selecting models

The inputs (features) of the model are burnup (MWd/MT) and
initial enrichment (wt% 235U). The outputs (targets) of the model
are the composition (weight %) of the 60 isotopes in the depleted
assembly.

With the curated dataset, we performed an outer loop search to
find the best-performing neural network hyperparameter (Table 2).
First, we set aside 20 percent of the data for final model testing
purposes. We used threefold cross validation (Stone, 1974) on
the remaining dataset to measure the average prediction error
value. We normalized the data using the sklearn MinMaxScaler
so that the range of input and output data was (0,1).

We selected the model with the smallest average error value
and exported the model as a Python pickle file along with the data-
set normalization objects and the list of isotopes. By exporting the
trained model as a self-contained file, the model can be used in any
Python application.

2.5. Model testing

We tested the accuracy of the model by comparing its UNF com-
position prediction in three different cases. First, we compared the
isotope-by-isotope prediction error of the model for an assembly
varies linearly with assembly burnup.
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Fig. 4. 239Pu composition in a UNF assembly is not linearly related to burnup, since it is affected by multiple, conflicting creation and destruction terms.

Fig. 5. 235U composition in a UNF assembly is somewhat proportional to both enrichment and burnup, but is difficult to predict using a simple linear regression algorithm.

Table 2
Table of hyperparameters tested for the neural network model. The bold numbers are
the values we used for the final model.

Parameter Values

Number of hidden layers 1, 2, 3, 4
Nodes per hidden layer 4, 16, 32, 64, 128
Dropout rate 0.0, 0.2, 0.5

J.W. Bae et al. / Annals of Nuclear Energy 139 (2020) 107230 5
with a specific burnup and enrichment. Second, we compared the
waste characteristics of an assembly to all assemblies. Third, we
compared the predicted total PWR UNF inventory with the UDB.
The metric for error is calculated as relative error percentage, �,

� ¼ xdata � xmodel

xdata
ð2Þ
where xdata and xmodel are composition values from the data and
model, respectively. This metric provides a fair assessment that is
sensitive even to isotopes comprising a small part of the total fuel
mass. Notably a large error percentage in the prediction of these
trace isotopes reflects a large error with respect to weight %, not
necessarily a large absolute mass difference.

We investigated the model accuracy with respect to fuel cycle
metrics such as activity and decay heat. The purpose of this inves-
tigation is to see how this model can accurately predict UNF inven-
tory profile when used in a NFC simulator.

We compared parameters of the UNF inventory such as activity
and decay heat, using the Python toolkit for Nuclear Engineering
(PyNE) (Scopatz et al., 2012).

Ideally, the model should be tested against data that is not part
of the training data. However, given that the purpose of this model
is to allow accessible and quick depletion calculation for fuel cycle



Fig. 6. Enrichment matrix defined for reactor with 3 batches, and 9 assemblies per
batch.

Fig. 7. Burnup matrix defined for reactor with 3 batches, and 3 assemblies per
batch. The values could also be passed as an equation for time. In this case, the
burnup for the last (and equilibrium) increases with time.

Fig. 8. Isotopic composition prediction error for an assembly with 29:998 GWd
MT

burnup and 3.2% enrichment.

Fig. 9. Isotopic composition prediction error for an assembly with 35:883 GWd
MT

burnup and 3.81% enrichment.
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simulations, the model would suffice if it predicts the dataset well.
In other words, the goal of the model is to be able to reproduce, in a
continuous manner, the range of fuel depletion calculations in the
database without access to the particular dataset and to have com-
parable performance to simple interpolation with respect to accu-
racy. This work demonstrates a general approach for implementing
rapid depletion models in fuel cycle simulations. To create deple-
tion models for other reactor designs or depletion parameters,
one would simply change the dataset to a set of depletion calcula-
tions performed for those specific reactor designs and operational
parameters.

2.6. Model implementation in CYCLUS

The trained model is exported to a file that can be plugged into
external codes. Since CYCLUS allows the developer to design arche-
types in python, we developed a Python-based reactor module that
behaves similarly to the CYCAMORE reactor but calculates depleted
fuel composition using the imported model instead of a recipe.
The user defines a burnup and enrichment matrix for the reactor,
and can even vary individual assembly burnups (Figs. 6 and 7).
The rows are the number of batches, and the columns are the num-
ber of assemblies in a batch.

This reactor module is also available on Github (Bae, 2019).
This sort of implementation can be done with a recipe-based

approach for modeling reactor depletion if the user defines multi-
ple output recipes. However, the user can only define the recipe of
a batch. Implementing this trained neural network model will
allow the user to vary burnup and enrichment for individual
assemblies, as well as vary fuel residence time and burnup with
reactor lifetime or simulation time. Such capability will be useful
in simulating the U.S. UNF inventory in the future, where the bur-
nup of Light Water Reactor (LWR) fuel will increase with advanced
fuel technology.

3. Results

The model performed better than using the average recipe in
predicting the U.S. UNF, with negligible increase in computational
time.

3.1. Depletion calculation time and file size

For 100 random sets of burnup and enrichment depletion pre-
dictions, the model takes 0.27 s to output discharge composition,
while searching the database for assemblies with the closest bur-
nup and enrichment (using Pandas) takes 21.8 s. Comparatively,
100 ORIGEN calculations take 118 s. Using the model achieves
43,700% reduction in time and does not require libraries, or a reac-
tor physics code. The standalone model pickle file is only 38 Kb,
while the curated database (.csv) is 330 Mb.
3.2. Assembly comparison

Ten data points were randomly sampled from the UDB, and
were compared with the model predictions to observe two things:

1. What isotopes the model is good/bad at predicting
2. What burnup/enrichment range the model is good/bad at

predicting

Figs. 8–11 show that the model generally has a high relative error
percentage for 226Ra (average concentration 6:0� 10�12%), 227Ac
(average concentration 2:3� 10�12%), and curium isotopes. The
absolute prediction errors are quite small (averaging 1e� 11),
but the large percent errors are due to the small value of the data.
There was not a notable difference in the error values for enrich-
ment and burnup variations.
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Fig. 10. Isotopic composition prediction error for an assembly with 35:193 GWd
MT

burnup and 4.0% enrichment.

Fig. 11. Isotopic composition prediction error for an assembly with 50:105GWdMT
burnup and 4.47% enrichment.

Table 4
Comparison of PWR UNF inventory in the U.S, obtained from direct data query, recipe
approach, and neural network prediction.

Metric Data Recipe Prediction

239Pu mass [t] 320.37 351.70 321.38
137Cs mass [t] 63.84 66.64 63.73
235U mass [t] 464.60 487.94 474.14
238U mass [t] 42,171 42,016 42,162

Decay Heat [MW] 193.39 198.55 193.33
Activity [Eþ 21Bq] 2:79 2:84 2:75

Fig. 12. Neural network model prediction error relative to median UDB recipe, for
key isotopes.
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3.3. U.S. UNF inventory comparison

In this section, we compare three UNF inventory composition
model approaches. The only difference is the composition of the
assemblies. The three different inventory compositions were
acquired by:

1. Data: directly query the assembly composition from the UDB.
2. Prediction: neural network prediction of depleted composition

using burnup and enrichment from database
3. Recipe: using a single composition (recipe) for all assemblies.

Assumes all compositions are the same.

The median values for burnup and initial enrichment are
41;552 MWd/MT and 3.85 (wt%), respectively. The concentrations
of major isotopes in the assembly are in Table 3.

We compare the three composition predictions according to:
Table 3
Isotopic concentration of the assembly with median burnup and enrichment. This compos

Isotopes 235U 238U

Concentration [wt%] 1.076 92.66
1. Isotopic inventory
2. Waste metrics (activity and decay heat)
3. Equivalent fissile inventory (equivalent 239Pu)

The UDB contains discharged assembly data from nuclear reac-
tors in the United States up to May of 2013. We added all the UNF
assemblies in the database and evaluated the inventory as it was in
2013. Table 4 shows the comparison of the inventories.
3.3.1. Isotopic inventory
In terms of isotopic composition accuracy, the trained neural

network model outperforms the mean recipe method for all iso-
topes. Fig. 12 shows the relative error between the full database,
model prediction, and the mean recipe for major isotopes. For plu-
tonium isotopes, the trained neural network model far outper-
forms the mean database (Fig. 13).
3.3.2. Waste management metrics
The trained neural network excellently predicts the activity and

decay heat metrics. Figs. 14 and 15 show the relative error percent
of the decay heat and activity predictions per assembly. The model
predicts 99.5% of assemblies with an error of less than 1%. Figs. 16
and 17 show the relative error of the decay heat and activity
calculated with the average recipe method. Unsurprisingly, the
error increases as the actual burnup and enrichments diverge from
the average.
ition is used for the recipe method.

239Pu 137Cs 90Sr

0.77 0.14 0.061



Fig. 13. Neural network model prediction error relative to median UDB recipe, for
plutonium isotopes.

Fig. 16. Relative error in decay heat calculated by the average recipe method. The
red point is the median enrichment and burnup. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 14. Relative error percentage for predicting the decay heat of individual
assemblies.

Fig. 15. Relative error percentage for predicting the activity of individual
assemblies.

Fig. 17. Relative error in activity calculated by the average recipe method. The red
point is the median enrichment and burnup.
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Table 5 shows the decay heat and activity comparison in the
years 2020, 2100, and 3100. The total error is less than 1.1% for
all metrics at all time periods. Fig. 18 shows relative error in activ-
ity and decay heat as a function of time. It shows that the model
outperforms the average recipe method in predicting waste
metrics.
3.3.3. Assembly fissile quality
Fissile quality is frequently quantified in units of 239Pu equiva-

lent, shown in Table 6 (Anon, 1989). This value is calculated by
aggregating the weighted fissile values of each isotope in a mate-
rial. The 239Pu equivalent factors are different for fast neutron spec-
trum and thermal neutron spectrum reactors (Baker and Ross,
1963) (factors shown in Table 6). The equivalent fissile value is cal-
culated by:
Pueq ¼
X

i

wimi ð3Þ
i 2 ½235U; 238Pu; 239Pu; 240Pu; 241Pu; 242Pu; 242Am�
wi ¼ equivalent weighting factors
mi ¼ mass of iso i

Where the variables represent the mass of each isotope.
Fig. 19 shows the fast spectrum 239Pu equivalent value of the

UNF inventory plotted over time. The trained model outperforms
the recipe method. The initial falls for all three lines are due to
the decay of plutonium 241, which has a half-life of 14 years.



Table 5
Decay heat and radioactivity values and errors for years 2020, 2100, and 3100.

Metric Year UDB [MW] Prediction [MW] Error [%]

Decay Heat 2020 40.97 41.07 �0.24
2100 16.42 16.47 �0.35
3100 3.13 3.14 �0.15

UDB [1019Bq] Prediction [1019Bq] Error[%]

Activity 2020 46.70 46.60 0.21
2100 6.39 6.38 0.07
3100 0.36 0.36 �0.17

Fig. 18. Relative error of waste management metrics for UNF inventory generated
by the average recipe and the prediction model.

Table 6
239Pu equivalence factors from (Anon, 1989). Factors are separately reported for
thermal and fast spectra.

LWR
(Thermal)

Fast Breeder Reactor (FBR)
(Fast)

235U +0.8 +0.8
238Pu �1.0 +0.44
239Pu +1.0 +1.0
240Pu �0.4 +0.14
241Pu +1.3 +1.5
242Pu �1.4 +0.037
241Am �2.2 �0.33

Fig. 19. 239Pu equivalent value in time for three inventories. The model predictions
match closely with the value from the database.
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3.4. CYCLUS implementation

In this work, we trained a neural network model and imple-
mented it as a CYCLUS reactor agent that predicts UNF composition.
The model predicts spent fuel composition based on customizable
reactor parameters such as discharge burnup, initial enrichment,
cycle time, and power capacity. The created archetype in CYCLUS also
allows users to define time-dependent equations instead of con-
stants for reactor parameters. The user can define an
enrichment-burnup matrix for each assembly in each batch, and
the burnup and enrichment values can be equations in time. This
way, users can implement reactor facilities in which the reactor
parameters change in time (e.g. to represent reactor uprates,
industry burnup trends, etc.).

Figs. 20 and 21 show the discharge fuel composition of a reactor
facility in which we increased the discharge burnup from 33,000 to
71,710 MWd/MT over 25 discharge cycles. It should be noted that
Fig. 20. Plutonium isotope composition in discharge fuel over discharge cycle. The
model does not predict well for the target burnup values that are over the burnup
listed in the training dataset.

Fig. 21. Fission product concentration in discharge fuel over discharge cycle.
Increased discharge burnup leads to higher fission product concentration.



Fig. 22. Discharge and refueling cycles can be defined as an equation of time in this
reactor archetype. Discharge burnup is scaled to take into account longer fuel
residence time, and leads to increase in discharge fuel 244Cm composition.
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the model does not take into account the plausibility of such fuel
depletion. For example, it would be nearly impossible for a PWR
to burn 2% enriched UOX fuel to 70,000 MWd/MT.

The user can also define time-varying cycle time and refueling
time for the reactor model, as shown in Fig. 22.

3.4.1. Applications and use cases
The capability to set dynamic reactor parameters allows simu-

lation of various future transition scenarios that depend on UNF
inventory characteristics, such as minor actinide (MA) inventory.
Users can simulate future scenarios in which the discharge burnup
of reactors increases over time to reveal impacts on MA inventory
and, correspondingly, transition speed.

With advances in materials, reactors may have longer cycle
times and higher fuel discharge burnups. This dynamic reactor
model will be able to account for the changes in these reactor
parameters. Also, users can simulate potential power uprates in
currently existing fleets, and estimate corresponding impacts on
UNF inventory.

4. Conclusion and discussion

This work shows that depleted fuel composition predictions in
fuel cycle simulators can be improved by using a predictive neural
network model. The neural network model predicted the UNF
inventory with less than 5% error for important isotopes, less than
1% error for waste management profile metrics, and less than 0.1%
error for 239Pu equivalence. The predictive model outperformed
the average recipe method in every metric.

We implemented this model in CYCLUS to provide a reactor model
with dynamic reactor parameters, which can simulate potential
future improvement scenarios in reactor operation.

This work also shows that open-source depletion models that
run quickly can be implemented using prediction models, trained
with datasets from complex depletion algorithms. NFC simulators
struggle to find a balance between fidelity and rapidity. Using a
high-fidelity model is prohibitively computationally expensive
since NFC simulators may need to run hundreds of depletion calcu-
lations for multiple facilities. On the other hand, using simpler
methods like recipes may be too simple for some applications since
they do not take into account variations in fuel parameters such as
burnup. A well-trained predictive algorithm can find a middle
ground between rapidity and fidelity.

Ideally, the model would be validated against an external
dataset, instead of the dataset used to train the model. However,
the purpose of this work is to create a model that can quickly
reproduce the database without having access to the database,
which is private data and large in size. The pickled file that con-
tains the model and data scaling objects is only 38.2 kB, meaning
that it can be easily distributed and imported in external software,
without revealing detailed information about the actual dataset.

An accessible, large-scale depletion database like the UDB are
valuable but rare. The value of data is increasing, with the advance-
ment of data science and machine learning. For the long-term
advancement of the field, the community should encourage collec-
tion and storage of more data and simulation results in a central
repository.

Importantly, this neural network is only appropriate for PWR
depletion calculations covered by the parametric space of the
training set. So, the user will need to remain inside the realm of
applicability when using neural networks trained in this way.

Future work

A trained model is only as good as the data it is trained on. This
work can be improved and expanded by generating more compre-
hensive depletion data that covers a wider range of enrichment
and burnup ranges. An automation script might run SCALE/ORIGEN
to perform depletion calculations for a wide range of enrichment
(e.g. 0.7–4.99 wt%) and burnup (e.g. 0–80,000 MWd/MT), for a sin-
gle assembly design. Assumptions of criticality and irradiation time
should be made as well. The results could then be parsed into a
Comma-separated values (CSV) file and stored for the training of
a new model. This will allow better prediction of the model for
higher burnups and ‘fringe’ burnup-enrichment assemblies.

Methods used in this paper have the potential to be expanded
into more complicated problems. An interesting application of this
method is for Molten Salt Reactor (MSR) system optimization. Cur-
rent work on MSRs include optimization non-core operating
parameters such as reprocessing scheme and flow rate. Fuel trans-
mutation calculations can be usually computationally burdensome
for MSR simulations, since the flowing fuel is depleted and repro-
cessed continuously. MSR models implement semi-continuous
methods in which the depletion-to-reprocessing time is very short
(usually 3 days), which makes an MSR lifetime simulation (if
60 years) require � 7;300 depletion calculations. The computa-
tional burden makes it impossible to use brute-force methods,
such as grid search of all possible parameters. However, if a quick
depletion calculation becomes possible with a well-trained predic-
tion model, the computational burden will dramatically decrease.
However, problems with generating enough training data, accu-
racy, and the model’s ability to extrapolate remain.
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