Dynamic Transition Analysis with TIMES

Anshuman Chaube, James Stubbins, Kathryn Huff

University of Illinios at Urbana-Champaign, Department of Nuclear, Plasma, and Radiological Engineering, Urbana, IL 61801

Objectives

 Division: Energy Analysis Division
 Project: I²CNER Initiative on Challenges in Energy Assessment and Energy Transitions
 Objective: Evaluate potential impact of novel energy technologies within Japan's energy system.

Milestones:

- Minimize carbon emissions within realistic constraints.
- Optimize realistic 2010-2050 decarbonization roadmaps.
- Identify high impact technologies.
- Identify potential transition bottlenecks.
 Help Japan's policymakers create timelines for R&D investment and infrastructure development.
 Quantify system sensitivity to technology readiness.
 Predict impediments to strategically optimal technology deployment.

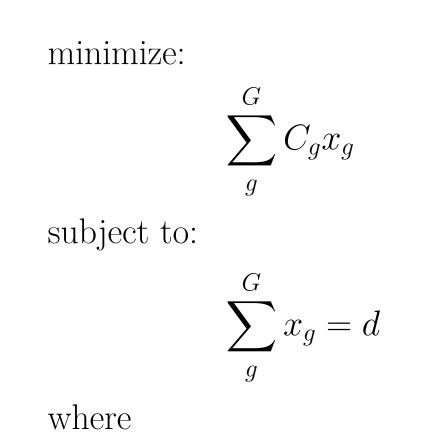
${\bf Methodology}$

- The Integrated MARKAL-EFOM System (TIMES) model generator [6] [10] optimizes energy systems using linear and mixed-linear algorithms. A user-defined objective function (such as minimizing carbon emissions or costs) is solved within user defined constraints such as energy generation demand.
- Sector Analysis: TIMES models can resolve generation and consumption by sector (commercial, industrial, residential, building etc).
- **Regional Analysis:** TIMES can also resolve regions. **Post-Processing:** Many metrics are automatically
 - postprocessed (i.e. energy intensity, thermal energy efficiency, transmission capacity).
- **Constrained Optimization** Modeling technology deployment transition as a constrained optimization problem will drive

Take Aways

- Dynamic simulation of Japan's energy system transition in the TIMES model generator will help develop near-term decarbonization strategies.
- Policymakers will benefit from identification of high impact technologies, and creation of R&D investment and infrastructure development timelines.
- Simulations will quantify system sensitivity to technology readiness.
- Dynamic analysis will identify potential transition bottlenecks.

Timeline


Introduction

Previous work has compared the impact of innovative energy technologies in various world regions using **static** scenario analyses [1, 2, 4, 5, 7, 8]. We will simulate **dynamic** transition scenarios [3, 9] aimed at minimizing carbon emissions in Japan by 2050. These scenarios will include realistic constraints regarding technology readiness (in terms of generation, transmission & storage) and will combine multiple technologies in a single heterogeneous system model.

> Maintenance costs

insights.

The key objective function is minimization of carbon emissions in 2050 and a key constraint will be that deployed generation capacity must meet energy demand. This can naïvely be written:

$C_g = \text{carbon emissions from generation component g}$
$x_g = deployment of generation component g$
d = generation demand

A simple **static** formulation is straightforward to write, as above. However this formulation is quickly complicated by including **dynamic time** as well as additional constraints (energy storage, variable demand, CO_2 sequestration, efficiency, costs, etc.)

Jan. 20	18	Project start:	Literature Review.
Feb. 20	18 · · · · •	Data collection:	Japan's current grid.
Mar. 20	18 · · · · •	Data collection:	Static projections.
May. 20	18 • • • •	Data collection:	Conventional technologies.
Jun. 20	18 · · · · •	Data collection:	i ² cner generation technology.
Jul. 20	18 · · · · •	Data collection:	i ² cner efficiency technology.
Aug. 20	18 · · · · •	Data collection:	i ² cner storage technology.
Sep. 20	18 · · · · •	Scenario simulation	n: 2010-2050 conventional.
Oct. 20	18 · · · · •	Scenario simulatior	n: 2010-2050 i ² cner driven.
Dec. 20	18 • • • •	Scenario simulation	n: 2010-2070.

2019 ····· Sensitivity analysis:

(1)

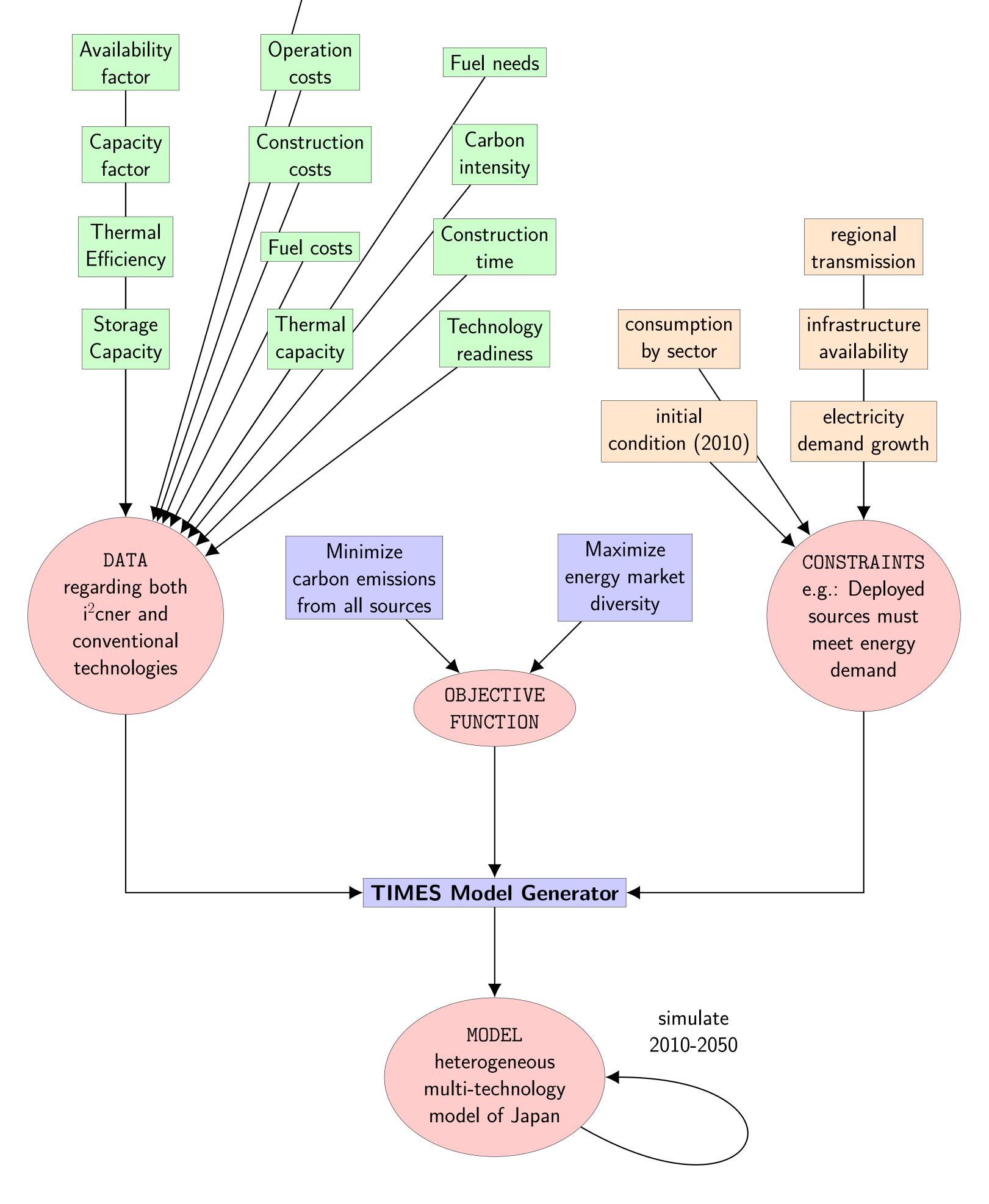
(2)

(3)

(4)

(5)

[4]


Vary key parameters.

References

 K. Chyong Chi, W. J. Nuttall, and D. M. Reiner. Dynamics of the UK natural gas industry: System dynamics modelling and long-term energy policy analysis. *Technological Forecasting and Social Change*, 76(3):339–357, Mar. 2009.
 Y. Y. Feng, S. Q. Chen, and L. X. Zhang. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. *Ecological Modelling*, 252(Supplement C):44–52, Mar. 2013.
 S. Jebaraj and S. Iniyan.

A review of energy models.

Renewable and Sustainable Energy Reviews, 10(4):281–311, Aug. 2006.
Y. Kikuchi.
Simulation-Based Approaches for Design of Smart Energy System: A
Review Applying Bibliometric Analysis.
Journal of Chemical Engineering of Japan, 50(6):385–396, 2017.

 [5] L. Li, C. Chen, S. Xie, C. Huang, Z. Cheng, H. Wang, Y. Wang, H. Huang, J. Lu, and S. Dhakal.
 Energy demand and carbon emissions under different development scenarios for Shanghai, China.

Energy Policy, 38(9):4797–4807, Sept. 2010.

- [6] R. Loulou, U. Remme, A. Kanudia, A. Lehtila, and G. Goldstein. Documentation for the TIMES Model Part II. *Energy technology systems analysis programme (ETSAP)*, 2005.
- [7] N. A. Pambudi, K. Itaoka, A. Kurosawa, and N. Yamakawa. Impact of Hydrogen fuel for CO2 Emission Reduction in Power Generation Sector in Japan.

Energy Procedia, 105(Supplement C):3075–3082, May 2017.

- [8] N. A. Pambudi, K. Itaoka, N. Yamakawa, and A. Kurosawa.
 Future Japan power generation sector by introducing hydrogen plant with 80% CO 2 emission reduction target: A preliminary analysis.
 In Sustainable Energy Engineering and Application (ICSEEA), 2016 International Conference on, pages 66–69. IEEE, 2016.
- [9] S. Pfenninger, A. Hawkes, and J. Keirstead.
 Energy systems modeling for twenty-first century energy challenges.
 Renewable and Sustainable Energy Reviews, 33(Supplement C):74–86, May 2014.
- [10] A. J. Seebregts, G. A. Goldstein, and K. Smekens.
 Energy/Environmental Modeling with the MARKAL Family of Models. In *Operations Research Proceedings 2001*, Operations Research Proceedings 2001, pages 75–82. Springer, Berlin, Heidelberg, 2002. DOI: 10.1007/978-3-642-50282-8_10.

Figure: Basic methodology for dynamic simulation of Japan's energy system.

Contact Information

- Web: arfc.github.io
- Email: kdhuff@illinois.edu

Acknowledgements

This research is being performed using funding received from the International Institute for Carbon Neutral Energy Research (I²CNER) Initiative on Challenges in Energy Assessment and Energy Transitions at the University of Illinois under Director Petros Sofronis.

