Numerical Experiments for testing Demand-Driven Deployment Algorithms

Gwendolyn Chee, Jin Whan Bae, and Kathryn D. Huff

Dept. of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign
gchee2 @illinois.edu

INTRODUCTION

For many fuel cycle simulators, it is currently up to the
user to define a deployment scheme for each component of
the fuel cycle to avoid gaps in the supply chain. This same
goal could also be achieved by setting all the facility’s ca-
pacities to infinity. However, this does not reflect real-world
conditions [1]. To address this gap in capability of fuel cycle
simulators, the Demand-Driven Cycamore Archetype project
(NEUP-FY16-10512) is developing prediction algorithms to
give CycLus demand-driven deployment capabilities. This
means that Cycrus will have the capability to deploy sup-
porting fuel cycle facilities to meet front-end and back-end
demands of the fuel cycle [1]. The project is a collaboration
between the University of Illinois Urbana-Champaign and the
University of South Carolina. This paper will discuss the nu-
merical experiments required to test the various prediction
algorithms designed for the project. In particular, this work
describes tests for the non-optimizing algorithm.

BACKGROUND: CYCLUS

Cycrus [2] is an agent-based extensible framework for
modeling flow of material through user-defined nuclear fuel
cycles [3]. Cycamore [4] is an additional modules repository
in the CycLus ecosystem that provides basic libraries to repre-
sent process physics of various components of the nuclear fuel
cycle (ie. mining, fuel enrichment, reactor) [5]. Each library
is an archetype.

Cycrus simulations are composed of discrete time steps.
Each time step is subdivided into phases. The time step exe-
cution phases for Cycrus are illustrated in Figure 1. Phases
labeled kernel have required actions that occur and phases
labeled agent are executed by individual agents. Agent refers
to specific facilities within the simulation. What happens in
"Tick" and "Tock" are unique to each archetype [1].

BACKGROUND: DEMAND-DRIVEN DEPLOYMENT
ALGORITHMS

Nuclear fuel cycle simulation scenarios are typically best
posed as constrained objective functions. This means that the
goal of a simulation is to optimize an objective function with
respect to constraints on certain variables. For nuclear fuel
cycle simulations, minimizing unmet electricity demand or
maximizing uranium utilization are typical objective functions.
Typical constraints might limit the availability of new nuclear
fuel cycle technology such as specific types of reprocessing.
This necessitates demand responsive deployment capabilities
to be added to fuel cycle simulation logic. The simulator
should have the capabilities to deploy supporting fuel cycle
facilities to enable a demand to be met. For example, for a

Build (kernel)

Tick (agent)

‘ Dynamic Resource Exchange (kernel)

Tock (agent)

[Decommission (kernel)]

Fig. 1. Each time step in Cycrus follows the five phases in
order.

once through fuel cycle with an energy growth demand of 1%
per year, the simulator should have the capabilities to optimally
deploy supporting facilities such as a mine, enrichment facility
and reactor to meet the demand [6].

METHOD: PREDICTION ALGORITHMS

For this project, three prediction algorithm types are con-
sidered: non-optimizing methods, deterministic optimization
and stochastic optimization. They are listed in level of effec-
tiveness and difficulty of design. These prediction models are
currently being developed by the USC team. Essentially, each
algorithm will create a supply chain of reactor and supporting
fuel facilities. At every time step, the demand for each fuel cy-
cle commodity will be evaluated and the algorithm will make
a prediction about future demand, resulting in the deployment
or decommissioning of facilities [1].

The non-optimizing method type is the most basic opti-
mization algorithm. It predicts future deployment schedules
solely based on historical data. In the tick phase, the difference
in supply and demand for each commodity is evaluated. Based
on the size of the difference and capacity of the correspond-
ing facility, facilities will be deployed or decommissioned.
Methods that are used include autoregressive moving aver-
age (ARMA) and autoregressive conditional heteroskedastic
(ARCH) methods. Both ARMA and ARCH rely on an autore-
gressive model which means that the predicted future values
of a time series depend on the previous values of that same
time series [7].

METHOD: TESTS

In Best Practices of Scientific computing [8], Wilson et
al. highlights the fact that similar to building experimental
apparatus, constructing software requires careful building and

validation to ensure their reliability. Furthermore, Wilson et
al discusses that because software is commonly reused, it can
result in a negative long term effect on the integrity of the
group’s work if a bug is not found.

An important practice for verification and maintenance of
code is to write and run tests. Automated tests ensure that a
piece of code is functioning the way it is intended. The most
basic test is the unit test which refers to the testing of a single
function [8]. For the demand-driven deployment algorithms,
unit tests will be written for each section of code to ensure
all components of the code are reliable. Testing may not be
perfect at capturing all the bugs; however, it minimizes them.

The goal is for the demand-driven deployment algorithms
to be integrated with the CycLus framework in the long term
and used to optimize simulations of transition analyses. There-
fore, if the algorithms are not well tested, they may have
undiagnosed logic flaws or bugs. This would result in inaccu-
racies with the conclusions drawn from the transition analyses
simulations and further compromise any experiments that use
the algorithm in the future [8].

Test Example

A simple once through fuel cycle scenario is sufficient to
verify the non-optimizing algorithm. The scenario used has
only four facilities. Figure 2 depicts the material flow between
the four facilities. In it, the bracketed values are demands
calculated in the algorithm. The Reactor demands x amount
of fuel which translates to x demand from enrichment and ax
demand from source, taking into account enrichment losses

[1].

[ru‘] [r] [J]

Fig. 2. Simple demand flow of materials.

Reactor Parameters Value Units
Lifetime 3 Timesteps
Power Capacity 1000 MWe
Assembly Size 100 kg

Assemblies per core 3

Enrichment Facility parameters Value Units

SWU Capacity 2000 SWU/timestep
Enrichment SWU for 1 assembly 528 SWU

Fuel output 300 kg/timestep

TABLE I. Simple once through nuclear fuel cycle scenario
parameters [1]

A unit test is written for each function of the algorithm
to test if its output matches the analytical solution for the
specified test scenario [1]. To ensure that the deployment and
decommissioning of the facilities is appropriate, the tick phase
must be working correctly. There are three main types of
tests that will ensure this. The first test is that the difference
between demand and supply for each commodity is below the
capacity of its respective facility for all time steps. The second
test is that the correct number of facilities are deployed at each

time step. The third test is that the correct number of facilities
are decommissioned at each time step.

An example for each type of test described above is given
for an enrichment facility whose output commodity is fuel.
Table I describes the scenario parameters that are relevant for
the example tests.

The first test example checks if the difference between en-
richment facility fuel supply and reactor fuel demand is within
plus-minus the output capacity of one enrichment facility for
every time step. For this test, a reactor is deployed at time
steps 2 and 3 and a fuel supply of 100kg is given at the initial
time step. Since each reactor has 3 assemblies per core, a fuel
demand of 300kg is required per reactor at the time step it is
deployed. The analytical solution for this test is shown in table
1L

Timestep Fuel Quantity Fuel Demand Difference

(kg) (kg) (kg)
1 100 0 100
2 400 300 100
3 400 300 100

TABLE II. Analytical solution of the difference between fuel
quantity and fuel demand per time step for a test scenario
where a reactor is deployed at time step 2 and 3 and an initial
fuel quantity of 100kg at time step 1 [1].

The second test example checks if an enrichment facility
is deployed when the amount of fuel available is below the
fuel demand of the reactor. For this test, a reactor is deployed
at time step 2. Since an enrichment facility outputs 300kg of
fuel per timestep, one enrichment facility must be deployed at
time step 2 to meet the fuel demand. The analytical solution
for this test is shown in table III.

Timestep Enrichment Facility deployment
1 0
2 1
3 0

TABLE III. Analytical solution of the number of fuel facilities
deployed per time step for a test scenario where a reactor is
deployed at time step 2. [1]

Timestep Enrichment Facility deployment
1 0
2 1
3 1
4 1
5 0

TABLE IV. Analytical solution of the number of enrichment
facilities deployed per time step for a test scenario where a
reactor is deployed at time step 2 and decommissioned at time
step S.

The third test example checks if an enrichment facility is
decommissioned when the amount of fuel available is above
the fuel demand of the reactor. For this test, a reactor is
deployed at time step 2. Since a reactor has a lifetime of 3

timesteps, it is decommissioned at time step 5. Therefore, the
enrichment facility must also be decommissioned at time step
5. The analytical solution for this test is shown in table IV.
Each of these tests will be implemented for each commod-
ity in the supply chain. Both the Demand-Driven Deployment
algorithms and tests are implemented in the Python language.

CONCLUSIONS

The above sections outline the types of numerical experi-
ments that will be implemented to test the non-optimizing
prediction algorithm for the Demand-Driven CycAMORE
Archetype project. Implementation of these and further tests
will ensure the reliability of the prediction algorithms. At
present, iterative feedback between the testing team at the
University of Illinois and the archetype development team
at the University of South Carolina is driving targeted devel-
opment of the non-optimizing agent archetype so that it will
successfully pass the tests.

ACKNOWLEDGMENTS

This work is supported by U.S. Department of Energy’s
Nuclear Energy University Program under contract # NEUP-
FY16-10512. This is a joint project with University of South
Carolina. The USC team comprising of Dr. Robert Flanagan
and Dr. Anthony Scopatz is developing the prediction models.

REFERENCES

1. J. W. BAE, G. CHEE, and K. D. HUFF, “Numerical Ex-
periments for Verifying Demand Driven Deployment Algo-
rithms,” Graduate Report, University of Illinois at Urbana-
Champaign, Urbana, IL (Jan. 2018).

2. R. W. CARLSEN, M. GIDDEN, K. HUFF, A. C. OPO-
TOWSKY, O. RAKHIMOV, A. M. SCOPATZ, Z. WELCH,
and P. WILSON, “Cyclus v1.5.3,” Figshare (Jun. 2014),
http://dx.doi.org/10.6084/m9.figshare.1041745.

3. K. D. HUFF, M. J. GIDDEN, R. W. CARLSEN, R. R.
FLANAGAN, M. B. MCGARRY, A. C. OPOTOWSKY,
E. A. SCHNEIDER, A. M. SCOPATZ, and P. P. H. WIL-
SON, “Fundamental concepts in the Cyclus nuclear fuel
cycle simulation framework,” Advances in Engineering
Software, 94, 46-59 (Apr. 2016).

4. R. W. CARLSEN, M. GIDDEN, K. HUFF, A. C. OPO-
TOWSKY, O. RAKHIMOV, A. M. SCOPATZ, and
P. WILSON, “Cycamore v1.5.3, Figshare (Jun. 2014),
http://figshare.com/articles/Cycamore_v1_0_0/1041829.

5. K. D. HUFF, M. FRATONI, and H. R. GREENBERG,
“Extensions to the cyclus ecosystem in support of market-
driven transition capability,” Tech. rep., Lawrence Liver-
more National Laboratory (LLNL), Livermore, CA (2014).

6. K. D. HUFF, J. W. BAE, K. A. MUMMAH, R. R. FLANA-
GAN, and A. M. SCOPATZ, “Current Status of Predictive
Transition Capability in Fuel Cycle Simulation,” in “Pro-
ceedings of Global 2017,” Seoul, South Korea (Sep. 2017).

7. A. M. SCOPATZ and K. D. HUFF, “Technical Narrative for
Demand-Driven Cycamore Archetypes,” Technical Report,
University of South Carolina and University of Illinois at

Urbana-Champaign (2016).

. G. WILSON, D. A. ARULIAH, C. T. BROWN, N. P.

CHUE HONG, M. DAVIS, R. T. GUY, S. H. D. HAD-
DOCK, K. D. HUFF, I. M. MITCHELL, M. D. PLUMB-
LEY, B. WAUGH, E. P. WHITE, and P. WILSON, “Best
Practices for Scientific Computing,” PLoS Biol, 12, 1,
e1001745 (Jan. 2014).

