
Methods for Automated Fuel Cycle Facility Deployment

Robert R. Flanagan1, Gwendolyn J. Chee2, Jin Whan Bae3, Roberto E. Fairhurst2 and Kathryn D. Huff2

1. Nuclear Engineering Program, University of South Carolina
2. Dept. of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign

3. Oak Ridge National Laboratory
flanagrr@mail.sc.edu

Developing nuclear fuel cycle scenarios requires

knowledge of what facilities will be deployed as the

simulation evolves. This can be done manual by a

researcher, or it can be done computationally. Manual

deployment requires a researcher to calculate the

deployment of each facility in the nuclear fuel cycle. This

can be simple for once-through fuel cycles; however, it is

much more difficult for closed fuel cycles. These more

advanced fuel cycles have complex interactions between

different reactors types. Automated deployment can rely

on several methods, from complicated logic to

mathematical models (such as time series methods). Time

series methods have been used historically in other

energy-based utilities to predict solar radiation and wind

behavior. By using these methods to predict the quantities

and quality of nuclear material, it is possible to determine

when nuclear facilities need to be built to match the

demands of a nuclear fuel cycle.

This work expands upon previous work done using two

specific types of time series methods; autoregressive

moving average (ARMA) and autoregressive conditional

heteroskedasticity (ARCH). Like the previous work, this

also utilizes the d3ploy module for the Cyclus Fuel Cycle

Simulator to do the automated deployment using

predictive time series methods. This new work explores a

much wider range of predictive techniques and

demonstrates their unique capabilities with regards to the

nuclear fuel cycle. These new methods include

autoregressive integrated moving average (ARIMA), fast

Fourier transforms (FFT), polynomial regression fitting,

exponential smoothing, and the Holt Winters method. The

implementation of each of these methods will be explained

in this work, as well as their advantages and short

comings regarding the nuclear fuel cycle.

I. Introduction

Analysis of nuclear fuel cycles often may be done to

examine how future facility deployments might affect

various fuel cycle metrics. Performing these deployments

can be done either by hand (manual by a researcher), or

automatically using software.

D3ploy (1) is a module for the fuel cycle simulator

Cyclus (2) designed to automate facility deployment. This

module uses the Cyclus Institution class as a basis to

deploy facilities based on supply and demand curves.

Facilities are deployed as individual facilities (i.e. a

reactor represents a unique reactor building) and not

fleets. This is because of the agent-based nature of the

Cyclus architecture. D3ploy relies on several methods to

predict the demand and supply in future time steps.

Three main types of methods are investigated. First,

non-optimizing time series methods will be explored. The

second type of methods are deterministic time series

models. Finally, a system that implements a linear algebra

solution to the fuel cycle is discussed.

The first class of time series methods are the non-

optimizing (NO) time series methods. The two NO

methods are Autoregressive Moving Average (ARMA)

and Autoregressive Condition Heteroskedasticity

(ARCH).

The determinist time series methods that will be

examined are Fast Fourier Transform (FFT), Polynomial

Fit Regression (Poly-fit), Exponential Smoothing, and

Holt-Walters method. Each of these methods is

implemented in the code through external software.

The final method investigated relies on solving a

matrix representing the system of equations that

characterize the demand and supply behavior of each

facility. The discussion of this method is covered in more

detail as the algorithm used to implement it inside D3ploy

is more complicated than the other methods.

This literature review will briefly summarize the

methods used. Each of these methods is used in several

ways as time series prediction methods. Insights into how

well these methods might work for the whole fuel cycle or

specific parts of the fuel cycle are included with each

overview. Additional how each method is implemented in

the software will also be mentioned.

mailto:flanagrr@mail.sc.edu

II. Methodology

II.A. Module Implementation

D3ploy operates within the Cyclus architecture and

leverages the specific advantages that are unique to

Cyclus. Due to the agent-based nature of Cyclus each

agent inside Cyclus can operate independently during a

simulation. This allows each agent to report to the system

how effective it was during a given time step.

For example, a reactor can report to the simulation

that it could produce only 80% of its specified power

during a time step because it was down for refueling. It

may also report that because it needs to go down for

refuel it requires fuel. Since this is done on a reactor by

reactor basis it allows for higher fidelity than fleet-based

simulations.

As all facilities can report to the simulation how

much of a given commodity they are supplying or

demanding on a given time-step, D3ploy must be able to

read these reports, and then determine if deployments

need to be made to ensure that the simulation does not

suffer from an under supply of material.

To accomplish this D3ploy records all demand and

supply calls for any commodity that it tracks, and stores

these for a given time step. These datasets are then used to

drive the decision-making process for all the methods

D3ploy employs except for the matrix method, which will

be discussed in more detail in Section II.E.

Each time-step D3ploy sends the time series data off

to the method that it is set to use. The method then

predicts the demand and supply for a given commodity

for the next time step (t+1). D3ploy determines if there is

a gap in the demand and supply curves. If a gap is noted

and supply is predicted to be less than demand, d3ploy

will schedule the deployment of facilities for the next

time-step. By default, deployment is done first by

preference, then by largest facilities first, and finally

filling in with smaller facilities to reach the smallest over

supply possible. Facilities with a higher preference will be

deployed more frequently than those with lower

preferences. The user may choose to deploy by smallest

facility first as an alternative option.

The choice of which time series prediction to use can

be set per commodity. This allows the user to try different

methods and see which operate best for a given

commodity. This makes sense for the nuclear fuel cycle

because in a realistic model, reactors request fuel in large

batches all at once, whereas enrichment facilities might

request material at a more constant rate. D3ploy ensures

that these two demand and supply curves can be handled

by different methods that might fit these behaviors better.

Although each commodity is tracked within D3ploy

there is only one driving commodity. This commodity is

typically the commodity that will require all other

commodities in some form. For example, if the driving

commodity is electrical power, this will require the

deployment of reactors. Reactors require fuel to operate.

As the number of reactors in the simulation increases, the

demand for fuel will increase, and fuel fabrication plants

will need to be deployed to meet this demand. On the

other side, reactors also demand space for their spent fuel,

so as the number of reactors increase the demand for

spent fuel space will increase and D3ploy will deploy

storage facilities to meet the demand. In this way, D3ploy

is capable of generate a full deployment schedule for not

only reactors, but all facilities in the model nuclear fuel

cycle.

II.B. Demand Response

The base behavior of D3ploy is known as the

Demand Response model. In this method, the system will

not predict the future time-step, but instead base the

deployment on the current time-step. This means that at

time-step t, if supply is less than demand, d3ploy will

schedule deployment of a facility in the next time-step.

This behave ensures that supply is always lagging

demand, but supply is still increasing along with the

demand. In systems will slow demand growth, or in

systems were facilities sizes are large compared to

demand growth this may result in limited periods of

undersupply situations. However, in situations with a fast-

growing demand, or small facility sizes, this may result in

many undersupply periods. This model was created to

give a base line functionality. It facilitates two important

capabilities.

First, it allows for a basis for analyzing the prediction

methods. It represents the worst-case scenario. All other

methods can be characterized by their improvement over

the worst-case scenario. Without this measure methods

could only be compared to each other, without any

knowledge of how poorly the system behaves without

prediction methods.

This model was also created to ensure that the

operation of D3ploy occurs even if the time series method

it is attempting to employ does not compute a value.

Some of the time series methods require several values in

a time series before operating with any degree of

accuracy. Additionally, all the prediction methods fail on

time series of length zero (with the exception of

exponential smoothing). Therefore, the Demand Response

method is required for at least the first time-step, but

sometimes it is also used later if solutions cannot be found

for the time series models.

II.C. Non-Optimizing

The first set of time series methods being

investigated are non-optimizing (NO) methods. This is the

Autoregressive Moving Average (3) (ARMA) and

Autoregressive Heteroskedasticity (4) (ARCH). Each

method has been used previously to forecast supply in

other power related fields, such as solar (5)(6) and wind

(7)(8) power generation. So, their ability to predict for

energy systems has previously been investigated, however

these methods have not been used explore nuclear fuel

cycles.

II.C.1 ARMA

The ARMA method relies on two components, an

autoregressive term, and a moving average term. These

two terms can be seen in Eq. (1) and Eq. (2) respectively.

 (1)

 (2)

Where c is a constant, ε is assumed to be a white nose

error term, X is the time series of interest, µ is the

expectation of X, φ and θ are weights, and p and q are the

order of the AR and MA functions respectively.

The full ARMA equation is a combination of these

two equations and can be seen in Eq. (3).

 (3)

The variables here are the same in Eq. (1), and Eq.

(2). The behavior of this function is autoregressive in

nature and therefore will regresses to previous values,

however the error terms allow this to catch a general

underlying trend in the data. This does not make it ideal

for growing systems, but in systems with spiking values it

allows the predictor to slowly return to values after a

dramatic increase.

Another downfall of this system is tied to the amount

of data in the time series that it uses. If the full time series

is used the moving average component of ARMA could

cause issues. In a system with high growth rates, the range

in the values of the time series can be quite large, driving

the predicted value down due to earlier time series values.

To reduce the effect of this issue, D3ploy allows the user

to set the number of time-steps to be used in the

calculation. Therefore allowing the user to effectively set

how sensitive the prediction is to more recent values.

D3ploy implements the Statsmodels (9) Python

library to determine the fit of the ARMA model and

predict the value at the next time-step.

II.C.2 ARCH

Unlike the ARMA model, the ARCH model is not

composed to two unique terms. Instead the ARCH model

modifies the original moving average term by changing

the error term in Eq. (1) into a combination of a stochastic

term, and a standard deviation. This new error term can be

seen in Eq. (4).

 (4)

Where represents the stochastic term (a strong

white noise process) and is determined by Eq. (5).

 (5)

As with ARMA this method is an autoregressive

method, however, their ability to handle volatile systems

is much better than ARMA models (4).

The ARCH method is implemented in D3ploy using

the ARCH (10) package for Python.

II.D. Deterministic

The deterministic methods are those that do not deal

with randomized solutions. Therefore, if a deterministic

method predicts using a time series, it will always

produce the same prediction from that time series, no

matter how many times the method is called.

 II.D.1 Fast Fourier Transform (FFT)

FFT attempts to break a time series down into a

combination of sine and cosine waves (or sine waves that

are with different phases), to produce characteristic

amplitudes and frequencies for the sine or cosine wave

that would reproduce the time series (11)(12). There are

several methods to do this. D3ploy uses SciPy (13)

(scientific computing library for Python) to perform the

FFT and the prediction of the next value in the sequence.

The values of the FFT are calculated as in Eq. 6.

 (6)

Where y[k] is the FFT, and N is the length of

sequence x[n]. This FFT returns a real component and an

imaginary component. In this work only the real

component is used to predict the next value in the time

series.

FFT could a powerful tool for simulating nuclear fuel

cycles because of the cyclical nature of the fuel cycle. In

systems containing many reactors the predictable nature

of refuel cycles fits the operation of FFTs. Further study

will need to be performed to understand the full capability

of this method with large scale systems. However, other

facilities in the nuclear fuel cycle don’t operate on a

cyclical behavior. FFT may not be the best solution for

these facilities.

II.D.2 Polynomial Fit

Polynomial fit, or polynomial regression is a form of

regression that attempts to fit an independent variable and

a dependent variable as an nth degree polynomial (14). It

has been used to model several different natural

processes, for example disease epidemics (15).

Polynomial methods typically use a least squares method

to minimize variance between the time series values and

the polynomial model.

D3ploy implements polynomial regression using

NumPy (16) a computation library for Python. In order to

allow for users to control over this operation D3ploy

allows the user to pass the order of the polynomial as an

import variable. NumPy minimizes the squared error term

to determine the proper coefficients for the polynomial

selected by the user.

The long cycle length of reactors might not fit

polynomials well, however other support structures might

be modeled well with polynomial fits. For example,

conversion facilities and enrichment facilities do not

produce material in large batches followed by long

periods of no activity. These facilities instead operate in a

more consistent fashion throughout the nuclear fuel cycle.

In some cases, these might best be described by linear

functions (a polynomial of one).

II.D.3 Exponential Smoothing and Holt-Winters

Exponential smoothing, like moving average

techniques, uses the previous values to inform the

prediction of the next value. However, in exponential

smoothing all previous values are not weighted equally,

instead the values are weighted by how far they are from

the prediction time-step. Values at times further from the

current time-step are given lower value than those closer

(17)(18)(19). The goal of the exponential smoothing

technique is to smooth out the data in the time series. This

is done using a least squares method. Unlike other

smoothing methods, for example moving average, this

technique does not require a minimum number of

observations in the time series to produce results.

However, more accurate predictions are possible as the

length of the analyzed time series is increased (to a limit,

the weighting means that values very far back will

eventually be of trivial worth). As simple example of how

the smoothing works is demonstrated in Eq (7) and Eq.

(8).

 (7)

 (8)

Where gt is the predicted value for the next time-step,

xt is the value of the data series at the current time step,

and alpha represents the smoothing factor. This factor

must be between [0,1]. Eq. (7) shows that if there is only

one value in the time series exponential smoothing still

produces a predicted value, but that predicted value is

equal to the current value.

The behavior of the smoothing factor is such that at

α=1 the predicted value is just the value of the current

time-step. Values of α closer to zero reduce importance of

time series values closer to the given timestep. This factor

has a big impact on the level of smoothing that is done.

Instead of choosing this value for the user, it is left open

for the user to choose as an input to D3ploy.

The unique weighting of this technique may allow

this method to be useful for simulations that have steep

growth curves. In transition scenarios this method has the

capability to better track the decrease in demand of one

fuel type and the increase in others.

Holt-Winters is a special version of exponential

smoothing that is designed to handle time series data that

demonstrates some sort of seasonal trend (20)(21). This

type of trending can be analogous to the refueling cycle

demands of nuclear reactors, in which there are long

periods of zero fuel demand, with peaks of high demand.

It is possible to imagine these are season trends and

therefore Holt-winters was added to D3ploy to

specifically investigate if this method could handle

realistic reactor behavior.

D3ploy implements the algorithm for exponential

smoothing, and Holt-Winters from the Statsmodels

package for python.

II.E. Matrix Solution

This section demonstrates the capability of a new

method being added to d3ploy. This method relies on the

use of a linear algebra solution to a matrix representing

the relationship of all facilities in a fuel cycle.

Given that the relationship of facilities is known

ahead of time by the user of the fuel cycle simulator it can

by a represented as a system of equations. For example,

take the simplified fuel cycle of front end, light water

reactor, fast reactor, storage. In this fuel cycle each of

these facilities has a relationship with at least one facility.

The following set of equations represents this fuel cycle.

 (9)
 (10)

 (11)

 (12)

Where, Nf represents the number of facility (f). FLWR

and FFR represent the fuel demands of the two reactor

types, Cf represents the capacity of facility f, and PuLWR is

the plutonium produced by the LWR, and PuFR is the

plutonium required by a fast reactor to operate.

In Eq. (9) the total power demand of the system is

handled. This equation is set such that the combined

power output of the fleet of LWRs and the output of the

fleet of FRs must equal the power demand.

In Eq. (10) the relationship of the plutonium

demanded by a fast reactor and that supplied by a single

LWR is displayed. This relationship assumes steady state

operation to start, however D3ploy is capable of updating

these values as the system advanced through time, so that

the plutonium demanded by the fast reactor can vary with

time. For the system to operate perfectly without

undersupply this equation is set to equal 0, the LWRs

supply the exact amount of plutonium used by the FRs.

Eq. (11) shows the relationship between the LWR

and the front end. It balances the amount of fuel required

by the LWR with the fuel produced by the front end.

Eq. (12) shows the balance between the used fuel

from the LWR and the FR and the storage capacity of the

storage facilities. This assumes that all the waste from

separation process that removes plutonium from the used

LWR fuel is sent to storage.

Once these equations are produced, they can be

converted into a matrix. Using the NumPy (16) linear

algebra package this matrix is solved to produce the

amount of facilities required at any given point in the

simulation. However, this only holds true if the capacities

and demands of each individual facility holds constant

throughout the simulation. Instead, the matrix is solved

each time step, using the change in driving commodity (in

this case power demand) between the next time step and

the current time step to determine the number of facilities

to be deployed. Depending on the ratio of power

generation capabilities of the reactors and the demand

change in power, this may not be an integer value of

facilities. For example, if an additional 100 MWe is

required in the next time step, and a reactor can produce

1000 MWe, a full reactor is not required. In this situation

D3ploy tracks the number of non-integer facilities

required and deploys when that value reaches an integer

value.

In D3ploy this works by setting the tracking value of

a facility type to 0 at the start of the simulation. As the

simulation progresses the amount of each facility required

is added to this tracking number. For example, if in time

step one D3ploy calculates that 0.6 reactors are required

to meet demand. This number is added to the reactor

tracking number, making it 0.6. A reactor is deployed in

the next time-step because while a full reactor is not

required, greater than zero reactors are required to meet

the power demand. The tracking number for reactors is

then reduced by one (the number of reactors deployed),

making it -0.4. On the next time-step (t=2) another 0.6

reactors are required, therefore the tracking becomes 0.2

(-0.4 + 0.6). Again, greater than 0 reactors are required to

meet the power demand and therefore a reactor is

deployed, and the tracking number is reduced by one,

making it -0.8. On the following time step (t=3) the

number of reactors required is again 0.6, the reactor

tracking number increases to -0.2 and a reactor is not

deployed because the tracking number is less than zero.

This process is calculated for all facilities in the fuel

cycle that are part of the system of equations for each

time step.

There are numerous flaws to this method. First, it

does not work for simulations that have large spikes in

demand. For example, reactors requesting all their fuel at

once on the refueling time-step. This method only works

if supplies and demands are spread out per time-step. A

simple work around to this is for a reactor to demand its

fuel spread out evenly over its cycle length. This applies

to all facilities in the fuel cycle.

Another limitation of this method is that currently

new technology cannot be added during a simulation.

This means that at present this method is incapable of

handling transition scenarios where new reactor

technology becomes available for deployment later in the

simulation.

II. FUTURE WORK

D3ploy is a fully integrated Cyclus module that shifts

the decision making of when to deploy fuel cycle

facilities from the user to the software. While determining

deployment schedules for reactors might be straight

forward in fleet-based simulators or in cycles that do not

include recycling of used fuel, it is non-trivial for more

complex fuel cycles. D3ploy aims to shifts the

development of deployment schedules away from human

resources and on to computational resources.

This paper details the method by which d3ploy

operates within the Cyclus Simulator and lists the

methods that have currently been implemented into

D3ploy. Previous work (1) has highlighted the capabilities

of D3ploy for both the ARMA and ARCH methods.

Numerical experiments that compare each of the methods

listed in this paper need to be performed. These

experiments need to highlight the benefits and

shortcomings of each method for difference types of fuel

cycle facilities, as well as different demand curves and

growth rates.

REFERENCES

1. Flanagan, R. "Using supply and demand curves to

determine facility deployment." (2018). Technical

Workshop on Fuel Cycle Simulation Records, Paris,

France.

2. Huff, Kathryn D., et al. "Fundamental concepts in the

Cyclus nuclear fuel cycle simulation

framework." Advances in Engineering Software 94

(2016): 46-59.

3. Woodard, D. B.; Matteson, D. S.; Henderson, S. G.

Stationarity of generalized autoregressive moving

average models. Electron. J. Statist. 5 (2011), 800--

828

4. Bollerslev, T. (1986). Generalized autoregressive

conditional heteroskedasticity. Journal of

econometrics, 31(3), 307-327.

5. Reikard, Gordon. "Predicting solar radiation at high

resolutions: A comparison of time series

forecasts." Solar Energy 83.3 (2009): 342-349.

6. Diagne, Maimouna, et al. "Review of solar irradiance

forecasting methods and a proposition for small-scale

insular grids." Renewable and Sustainable Energy

Reviews 27 (2013): 65-76.

7. Soman, Saurabh S., et al. "A review of wind power

and wind speed forecasting methods with different

time horizons." North American power symposium

(NAPS), 2010. IEEE, 2010.

8. Taylor, James W., Patrick E. McSharry, and Roberto

Buizza. "Wind power density forecasting using

ensemble predictions and time series models." IEEE

Transactions on Energy Conversion 24.3 (2009): 775.

9. Seabold, Skipper, and Josef Perktold.
"Statsmodels: Econometric and statistical
modeling with python." Proceedings of the 9th
Python in Science Conference. Vol. 57. Scipy,
2010.

10. https://github.com/bashtage/arch

11. Cooley, James W., and John W. Tukey, 1965, “An

algorithm for the machine calculation of complex

Fourier series,” Math. Comput. 19: 297-301

12. Press, W., Teukolsky, S., Vetterline, W.T., and

Flannery, B.P., 2007, Numerical Recipes: The Art of

Scientific Computing, ch. 12-13. Cambridge Univ.

Press, Cambridge, UK.

13. Jones, Eric, Travis Oliphant, and Pearu Peterson.

"{SciPy}: Open source scientific tools for {Python}."

(2014).

14. Peixoto, Julio L. "A property of well-formulated

polynomial regression models." The American

Statistician 44.1 (1990): 26-30.

15. Rohr, Jason R., and Thomas R. Raffel. "Linking

global climate and temperature variability to

widespread amphibian declines putatively caused by

disease." Proceedings of the National Academy of

Sciences 107.18 (2010): 8269-8274.

16. Oliphant, Travis E. A guide to NumPy. Vol. 1. USA:

Trelgol Publishing, 2006.

17. Gardner Jr, Everette S. "Exponential smoothing: The

state of the art." Journal of forecasting 4.1 (1985): 1-

28.

18. Hyndman, Rob, et al. Forecasting with exponential

smoothing: the state space approach. Springer

Science & Business Media, 2008.

19. Hyndman, Rob J., and George Athanasopoulos.

Forecasting: principles and practice. OTexts, 2014.

20. Chatfield, Chris, and Mohammad Yar. "Holt‐Winters

forecasting: some practical issues." Journal of the

Royal Statistical Society: Series D (The

Statistician) 37.2 (1988): 129-140.

21. Kalekar, Prajakta S. "Time series forecasting using

holt-winters exponential smoothing." Kanwal Rekhi

School of Information Technology 4329008.13

(2004).

