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Developing nuclear fuel cycle scenarios requires 

knowledge of what facilities will be deployed as the 

simulation evolves. This can be done manual by a 

researcher, or it can be done computationally. Manual 

deployment requires a researcher to calculate the 

deployment of each facility in the nuclear fuel cycle. This 

can be simple for once-through fuel cycles; however, it is 

much more difficult for closed fuel cycles. These more 

advanced fuel cycles have complex interactions between 

different reactors types. Automated deployment can rely 

on several methods, from complicated logic to 

mathematical models (such as time series methods). Time 

series methods have been used historically in other 

energy-based utilities to predict solar radiation and wind 

behavior. By using these methods to predict the quantities 

and quality of nuclear material, it is possible to determine 

when nuclear facilities need to be built to match the 

demands of a nuclear fuel cycle.  

This work expands upon previous work done using two 

specific types of time series methods; autoregressive 

moving average (ARMA) and autoregressive conditional 

heteroskedasticity (ARCH). Like the previous work, this 

also utilizes the d3ploy module for the Cyclus Fuel Cycle 

Simulator to do the automated deployment using 

predictive time series methods. This new work explores a 

much wider range of predictive techniques and 

demonstrates their unique capabilities with regards to the 

nuclear fuel cycle. These new methods include 

autoregressive integrated moving average (ARIMA), fast 

Fourier transforms (FFT), polynomial regression fitting, 

exponential smoothing, and the Holt Winters method. The 

implementation of each of these methods will be explained 

in this work, as well as their advantages and short 

comings regarding the nuclear fuel cycle.  

 

I. Introduction 

 

Analysis of nuclear fuel cycles often may be done to 

examine how future facility deployments might affect 

various fuel cycle metrics. Performing these deployments 

can be done either by hand (manual by a researcher), or 

automatically using software.  

 

 

D3ploy (1) is a module for the fuel cycle simulator 

Cyclus (2) designed to automate facility deployment. This 

module uses the Cyclus Institution class as a basis to 

deploy facilities based on supply and demand curves. 

Facilities are deployed as individual facilities (i.e. a 

reactor represents a unique reactor building) and not 

fleets. This is because of the agent-based nature of the 

Cyclus architecture. D3ploy relies on several methods to 

predict the demand and supply in future time steps.  

 

Three main types of methods are investigated. First, 

non-optimizing time series methods will be explored. The 

second type of methods are deterministic time series 

models. Finally, a system that implements a linear algebra 

solution to the fuel cycle is discussed.     

 

The first class of time series methods are the non-

optimizing (NO) time series methods. The two NO 

methods are Autoregressive Moving Average (ARMA) 

and Autoregressive Condition Heteroskedasticity 

(ARCH).  

 

The determinist time series methods that will be 

examined are Fast Fourier Transform (FFT), Polynomial 

Fit Regression (Poly-fit), Exponential Smoothing, and 

Holt-Walters method. Each of these methods is 

implemented in the code through external software.  

 

The final method investigated relies on solving a 

matrix representing the system of equations that 

characterize the demand and supply behavior of each 

facility. The discussion of this method is covered in more 

detail as the algorithm used to implement it inside D3ploy 

is more complicated than the other methods.  

 

This literature review will briefly summarize the 

methods used. Each of these methods is used in several 

ways as time series prediction methods. Insights into how 

well these methods might work for the whole fuel cycle or 

specific parts of the fuel cycle are included with each 

overview. Additional how each method is implemented in 

the software will also be mentioned.   
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II. Methodology 

 

II.A. Module Implementation 

 

D3ploy operates within the Cyclus architecture and 

leverages the specific advantages that are unique to 

Cyclus. Due to the agent-based nature of Cyclus each 

agent inside Cyclus can operate independently during a 

simulation. This allows each agent to report to the system 

how effective it was during a given time step. 

 

For example, a reactor can report to the simulation 

that it could produce only 80% of its specified power 

during a time step because it was down for refueling. It 

may also report that because it needs to go down for 

refuel it requires fuel. Since this is done on a reactor by 

reactor basis it allows for higher fidelity than fleet-based 

simulations.  

 

As all facilities can report to the simulation how 

much of a given commodity they are supplying or 

demanding on a given time-step, D3ploy must be able to 

read these reports, and then determine if deployments 

need to be made to ensure that the simulation does not 

suffer from an under supply of material.  

 

To accomplish this D3ploy records all demand and 

supply calls for any commodity that it tracks, and stores 

these for a given time step. These datasets are then used to 

drive the decision-making process for all the methods 

D3ploy employs except for the matrix method, which will 

be discussed in more detail in Section II.E. 

 

Each time-step D3ploy sends the time series data off 

to the method that it is set to use. The method then 

predicts the demand and supply for a given commodity 

for the next time step (t+1). D3ploy determines if there is 

a gap in the demand and supply curves. If a gap is noted 

and supply is predicted to be less than demand, d3ploy 

will schedule the deployment of facilities for the next 

time-step. By default, deployment is done first by 

preference, then by largest facilities first, and finally 

filling in with smaller facilities to reach the smallest over 

supply possible. Facilities with a higher preference will be 

deployed more frequently than those with lower 

preferences. The user may choose to deploy by smallest 

facility first as an alternative option.  

 

The choice of which time series prediction to use can 

be set per commodity. This allows the user to try different 

methods and see which operate best for a given 

commodity. This makes sense for the nuclear fuel cycle 

because in a realistic model, reactors request fuel in large 

batches all at once, whereas enrichment facilities might 

request material at a more constant rate. D3ploy ensures 

that these two demand and supply curves can be handled 

by different methods that might fit these behaviors better.  

 

Although each commodity is tracked within D3ploy 

there is only one driving commodity. This commodity is 

typically the commodity that will require all other 

commodities in some form. For example, if the driving 

commodity is electrical power, this will require the 

deployment of reactors. Reactors require fuel to operate. 

As the number of reactors in the simulation increases, the 

demand for fuel will increase, and fuel fabrication plants 

will need to be deployed to meet this demand. On the 

other side, reactors also demand space for their spent fuel, 

so as the number of reactors increase the demand for 

spent fuel space will increase and D3ploy will deploy 

storage facilities to meet the demand. In this way, D3ploy 

is capable of generate a full deployment schedule for not 

only reactors, but all facilities in the model nuclear fuel 

cycle.   

 

II.B. Demand Response 

 

The base behavior of D3ploy is known as the 

Demand Response model. In this method, the system will 

not predict the future time-step, but instead base the 

deployment on the current time-step. This means that at 

time-step t, if supply is less than demand, d3ploy will 

schedule deployment of a facility in the next time-step. 

This behave ensures that supply is always lagging 

demand, but supply is still increasing along with the 

demand. In systems will slow demand growth, or in 

systems were facilities sizes are large compared to 

demand growth this may result in limited periods of 

undersupply situations. However, in situations with a fast-

growing demand, or small facility sizes, this may result in 

many undersupply periods. This model was created to 

give a base line functionality. It facilitates two important 

capabilities. 

 

First, it allows for a basis for analyzing the prediction 

methods. It represents the worst-case scenario. All other 

methods can be characterized by their improvement over 

the worst-case scenario. Without this measure methods 

could only be compared to each other, without any 

knowledge of how poorly the system behaves without 

prediction methods.  

 

This model was also created to ensure that the 

operation of D3ploy occurs even if the time series method 

it is attempting to employ does not compute a value. 

Some of the time series methods require several values in 

a time series before operating with any degree of 

accuracy. Additionally, all the prediction methods fail on 

time series of length zero (with the exception of 

exponential smoothing). Therefore, the Demand Response 

method is required for at least the first time-step, but 



sometimes it is also used later if solutions cannot be found 

for the time series models.   

 

II.C. Non-Optimizing 

 

The first set of time series methods being 

investigated are non-optimizing (NO) methods. This is the 

Autoregressive Moving Average (3) (ARMA) and 

Autoregressive Heteroskedasticity (4) (ARCH). Each 

method has been used previously to forecast supply in 

other power related fields, such as solar (5)(6) and wind 

(7)(8) power generation. So, their ability to predict for 

energy systems has previously been investigated, however 

these methods have not been used explore nuclear fuel 

cycles.  

 

II.C.1 ARMA 

 

The ARMA method relies on two components, an 

autoregressive term, and a moving average term. These 

two terms can be seen in Eq. (1) and Eq. (2) respectively. 

  

 (1) 

 

 (2) 

 

 

Where c is a constant, ε is assumed to be a white nose 

error term, X is the time series of interest, µ is the 

expectation of X, φ and θ are weights, and p and q are the 

order of the AR and MA functions respectively. 

 

The full ARMA equation is a combination of these 

two equations and can be seen in Eq. (3).  

  

    (3) 

 

The variables here are the same in Eq. (1), and Eq. 

(2). The behavior of this function is autoregressive in 

nature and therefore will regresses to previous values, 

however the error terms allow this to catch a general 

underlying trend in the data. This does not make it ideal 

for growing systems, but in systems with spiking values it 

allows the predictor to slowly return to values after a 

dramatic increase.  

 

Another downfall of this system is tied to the amount 

of data in the time series that it uses. If the full time series 

is used the moving average component of ARMA could 

cause issues. In a system with high growth rates, the range 

in the values of the time series can be quite large, driving 

the predicted value down due to earlier time series values. 

To reduce the effect of this issue, D3ploy allows the user 

to set the number of time-steps to be used in the 

calculation. Therefore allowing the user to effectively set 

how sensitive the prediction is to more recent values.  

 

D3ploy implements the Statsmodels (9) Python 

library to determine the fit of the ARMA model and 

predict the value at the next time-step.  

 

 

II.C.2 ARCH 

 

Unlike the ARMA model, the ARCH model is not 

composed to two unique terms. Instead the ARCH model 

modifies the original moving average term by changing 

the error term in Eq. (1) into a combination of a stochastic 

term, and a standard deviation. This new error term can be 

seen in Eq. (4).  

   (4) 

Where  represents the stochastic term (a strong 

white noise process) and  is determined by Eq. (5). 
 

   (5) 

 

As with ARMA this method is an autoregressive 

method, however, their ability to handle volatile systems 

is much better than ARMA models (4).   

 

The ARCH method is implemented in D3ploy using 

the ARCH (10) package for Python.  

 

II.D. Deterministic 

 

The deterministic methods are those that do not deal 

with randomized solutions. Therefore, if a deterministic 

method predicts using a time series, it will always 

produce the same prediction from that time series, no 

matter how many times the method is called.  

 

 II.D.1 Fast Fourier Transform (FFT) 

 

FFT attempts to break a time series down into a 

combination of sine and cosine waves (or sine waves that 

are with different phases), to produce characteristic 

amplitudes and frequencies for the sine or cosine wave 

that would reproduce the time series (11)(12). There are 

several methods to do this. D3ploy uses SciPy (13) 

(scientific computing library for Python) to perform the 

FFT and the prediction of the next value in the sequence. 

The values of the FFT are calculated as in Eq. 6.  

 



   (6) 

 

Where y[k] is the FFT, and N is the length of 

sequence x[n]. This FFT returns a real component and an 

imaginary component. In this work only the real 

component is used to predict the next value in the time 

series.  

 

FFT could a powerful tool for simulating nuclear fuel 

cycles because of the cyclical nature of the fuel cycle. In 

systems containing many reactors the predictable nature 

of refuel cycles fits the operation of FFTs. Further study 

will need to be performed to understand the full capability 

of this method with large scale systems.  However, other 

facilities in the nuclear fuel cycle don’t operate on a 

cyclical behavior. FFT may not be the best solution for 

these facilities.  

 

II.D.2 Polynomial Fit 

 

Polynomial fit, or polynomial regression is a form of 

regression that attempts to fit an independent variable and 

a dependent variable as an nth degree polynomial (14). It 

has been used to model several different natural 

processes, for example disease epidemics (15). 

Polynomial methods typically use a least squares method 

to minimize variance between the time series values and 

the polynomial model.  

 

D3ploy implements polynomial regression using 

NumPy (16) a computation library for Python. In order to 

allow for users to control over this operation D3ploy 

allows the user to pass the order of the polynomial as an 

import variable. NumPy minimizes the squared error term 

to determine the proper coefficients for the polynomial 

selected by the user.  

 

The long cycle length of reactors might not fit 

polynomials well, however other support structures might 

be modeled well with polynomial fits. For example, 

conversion facilities and enrichment facilities do not 

produce material in large batches followed by long 

periods of no activity. These facilities instead operate in a 

more consistent fashion throughout the nuclear fuel cycle. 

In some cases, these might best be described by linear 

functions (a polynomial of one).   

 

II.D.3 Exponential Smoothing and Holt-Winters 

 

Exponential smoothing, like moving average 

techniques, uses the previous values to inform the 

prediction of the next value. However, in exponential 

smoothing all previous values are not weighted equally, 

instead the values are weighted by how far they are from 

the prediction time-step. Values at times further from the 

current time-step are given lower value than those closer 

(17)(18)(19). The goal of the exponential smoothing 

technique is to smooth out the data in the time series. This 

is done using a least squares method. Unlike other 

smoothing methods, for example moving average, this 

technique does not require a minimum number of 

observations in the time series to produce results. 

However, more accurate predictions are possible as the 

length of the analyzed time series is increased (to a limit, 

the weighting means that values very far back will 

eventually be of trivial worth). As simple example of how 

the smoothing works is demonstrated in Eq (7) and Eq. 

(8). 

   (7) 

 
   (8) 

 

Where gt is the predicted value for the next time-step, 

xt is the value of the data series at the current time step, 

and alpha represents the smoothing factor. This factor 

must be between [0,1]. Eq. (7) shows that if there is only 

one value in the time series exponential smoothing still 

produces a predicted value, but that predicted value is 

equal to the current value.  

 

The behavior of the smoothing factor is such that at 

α=1 the predicted value is just the value of the current 

time-step. Values of α closer to zero reduce importance of 

time series values closer to the given timestep. This factor 

has a big impact on the level of smoothing that is done. 

Instead of choosing this value for the user, it is left open 

for the user to choose as an input to D3ploy.  

 

The unique weighting of this technique may allow 

this method to be useful for simulations that have steep 

growth curves. In transition scenarios this method has the 

capability to better track the decrease in demand of one 

fuel type and the increase in others.  

 

Holt-Winters is a special version of exponential 

smoothing that is designed to handle time series data that 

demonstrates some sort of seasonal trend (20)(21). This 

type of trending can be analogous to the refueling cycle 

demands of nuclear reactors, in which there are long 

periods of zero fuel demand, with peaks of high demand. 

It is possible to imagine these are season trends and 

therefore Holt-winters was added to D3ploy to 

specifically investigate if this method could handle 

realistic reactor behavior.  

 

D3ploy implements the algorithm for exponential 

smoothing, and Holt-Winters from the Statsmodels 

package for python.  

 

II.E. Matrix Solution 



 

This section demonstrates the capability of a new 

method being added to d3ploy. This method relies on the 

use of a linear algebra solution to a matrix representing 

the relationship of all facilities in a fuel cycle.  

 

Given that the relationship of facilities is known 

ahead of time by the user of the fuel cycle simulator it can 

by a represented as a system of equations. For example, 

take the simplified fuel cycle of front end, light water 

reactor, fast reactor, storage. In this fuel cycle each of 

these facilities has a relationship with at least one facility. 

The following set of equations represents this fuel cycle.  

 

   (9) 
     (10) 

     (11) 

   (12) 

 

Where, Nf represents the number of facility (f). FLWR 

and FFR represent the fuel demands of the two reactor 

types, Cf represents the capacity of facility f, and PuLWR is 

the plutonium produced by the LWR, and PuFR is the 

plutonium required by a fast reactor to operate.  

 

In Eq. (9) the total power demand of the system is 

handled. This equation is set such that the combined 

power output of the fleet of LWRs and the output of the 

fleet of FRs must equal the power demand.  

 

In Eq. (10) the relationship of the plutonium 

demanded by a fast reactor and that supplied by a single 

LWR is displayed. This relationship assumes steady state 

operation to start, however D3ploy is capable of updating 

these values as the system advanced through time, so that 

the plutonium demanded by the fast reactor can vary with 

time. For the system to operate perfectly without 

undersupply this equation is set to equal 0, the LWRs 

supply the exact amount of plutonium used by the FRs.  

 

Eq. (11) shows the relationship between the LWR 

and the front end. It balances the amount of fuel required 

by the LWR with the fuel produced by the front end.  

 

Eq. (12) shows the balance between the used fuel 

from the LWR and the FR and the storage capacity of the 

storage facilities. This assumes that all the waste from 

separation process that removes plutonium from the used 

LWR fuel is sent to storage.  

 

Once these equations are produced, they can be 

converted into a matrix. Using the NumPy (16) linear 

algebra package this matrix is solved to produce the 

amount of facilities required at any given point in the 

simulation. However, this only holds true if the capacities 

and demands of each individual facility holds constant 

throughout the simulation. Instead, the matrix is solved 

each time step, using the change in driving commodity (in 

this case power demand) between the next time step and 

the current time step to determine the number of facilities 

to be deployed. Depending on the ratio of power 

generation capabilities of the reactors and the demand 

change in power, this may not be an integer value of 

facilities. For example, if an additional 100 MWe is 

required in the next time step, and a reactor can produce 

1000 MWe, a full reactor is not required. In this situation 

D3ploy tracks the number of non-integer facilities 

required and deploys when that value reaches an integer 

value.   

 

In D3ploy this works by setting the tracking value of 

a facility type to 0 at the start of the simulation. As the 

simulation progresses the amount of each facility required 

is added to this tracking number. For example, if in time 

step one D3ploy calculates that 0.6 reactors are required 

to meet demand. This number is added to the reactor 

tracking number, making it 0.6. A reactor is deployed in 

the next time-step because while a full reactor is not 

required, greater than zero reactors are required to meet 

the power demand. The tracking number for reactors is 

then reduced by one (the number of reactors deployed), 

making it -0.4. On the next time-step (t=2) another 0.6 

reactors are required, therefore the tracking becomes 0.2 

(-0.4 + 0.6). Again, greater than 0 reactors are required to 

meet the power demand and therefore a reactor is 

deployed, and the tracking number is reduced by one, 

making it -0.8. On the following time step (t=3) the 

number of reactors required is again 0.6, the reactor 

tracking number increases to -0.2 and a reactor is not 

deployed because the tracking number is less than zero. 

 

This process is calculated for all facilities in the fuel 

cycle that are part of the system of equations for each 

time step.  

 

There are numerous flaws to this method. First, it 

does not work for simulations that have large spikes in 

demand. For example, reactors requesting all their fuel at 

once on the refueling time-step. This method only works 

if supplies and demands are spread out per time-step.  A 

simple work around to this is for a reactor to demand its 

fuel spread out evenly over its cycle length. This applies 

to all facilities in the fuel cycle.  

 

Another limitation of this method is that currently 

new technology cannot be added during a simulation. 

This means that at present this method is incapable of 

handling transition scenarios where new reactor 

technology becomes available for deployment later in the 

simulation.  

 



II. FUTURE WORK 

D3ploy is a fully integrated Cyclus module that shifts 

the decision making of when to deploy fuel cycle 

facilities from the user to the software. While determining 

deployment schedules for reactors might be straight 

forward in fleet-based simulators or in cycles that do not 

include recycling of used fuel, it is non-trivial for more 

complex fuel cycles. D3ploy aims to shifts the 

development of deployment schedules away from human 

resources and on to computational resources.  

 

This paper details the method by which d3ploy 

operates within the Cyclus Simulator and lists the 

methods that have currently been implemented into 

D3ploy. Previous work (1) has highlighted the capabilities 

of D3ploy for both the ARMA and ARCH methods.  

Numerical experiments that compare each of the methods 

listed in this paper need to be performed. These 

experiments need to highlight the benefits and 

shortcomings of each method for difference types of fuel 

cycle facilities, as well as different demand curves and 

growth rates.  
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