
An Agent-Based Framework for Fuel Cycle Simulation with Recycling

Matthew J. Gidden, Paul P.H. Wilson, Kathryn D. Huff, Robert W. Carlsen
Department of Nuclear Engineering & Engineering Physics, University of Wisconsin - Madison, Madison, WI, 53703

gidden@wisc.edu

Simulation of the nuclear fuel cycle is an established field
with multiple players. Prior development work has utilized tech-
niques such as system dynamics to provide a solution structure
for the matching of supply and demand in these simulations. In
general, however, simulation infrastructure development has
occured in relatively closed circles, each effort having unique
considerations as to the cases which are desired to be modeled.
Accordingly, individual simulators tend to have their design
decisions driven by specific use cases. Presented in this work is
a proposed supply and demand matching algorithm that lever-
ages the techniques of the well-studied field of mathematical
programming. A generic approach is achieved by treating fa-
cilities as individual entities and actors in the supply-demand
market which denote preferences amongst commodities. Using
such a framework allows for varying levels of interaction fi-
delity, ranging from low-fidelity, quick solutions to high-fidelity
solutions that model individual transactions (e.g. at the fuel-
assembly level). The power of the technique is that it allows
such flexibility while still treating the problem in a generic man-
ner, encapsulating simulation engine design decisions in such a
way that future simulation requirements can be relatively easily
added when needed.

INTRODUCTION

Nuclear fuel cycle simulation is a practiced by many different
nation states, academic institutions, and some private compa-
nies. The actors in this arena, however, often are interested in
different categories of questions which tend to drive their simu-
lation design decisions. The first simulators implemented over
a decade ago were designed to answer broad reaching ques-
tions regarding the basic fuel stockpile makeups as a function
of time given a variety of top-level fuel cycle decisions. For
instance, one may investigate the relative repository require-
ments for different fuel cycles as a function of the aggregate
elemental composition of their mass flows to the repository.
Fairly quickly, however, one realizes that the granularity of
the class of questions that can be investigate is rather coarse.
Furthermore, for the majority of simulators, expert input is
required to investigate even slightly different cases (e.g., inves-
tigating the effect of higher burnup fuels). Finally, because each
simulator is championed by a different entity and developed in
relative isolation, the actual simulation mechanics differ across
the spectrum of simulators, causing benchmarking efforts to be
cumbersome and making the simulators difficult to validate.

Accordingly, there is strong motivation to reflect on the pur-
pose and scope of fuel cycle simulation in order to determine
how one may investigate the suite of questions that interested

parties have regarding the nuclear fuel cycle. The proposed
work herein provides a methodological description of a generic
simulation engine and interface that is agnostic to the differ-
ent fuel cycle options that can be investigate. The interac-
tion amongst facilities is abstracted away into a mathematical
programming approximation of matching of supply and de-
mand. Facilities themselves can behave in an automated or user-
defined fashion, e.g., modules are currently in development to
allow for on-the-fly isotopic calculations of spent reactor fuel
based on run-time parameters. The facility building decision
making is abstracted away into entities which own a given set
of facilities. Finally, the demand for various facilities’ services
is abstracted away into entities modeled as regions. The various
layers of abstraction from a simulation design point-of-view
allow interested parties to investigate separate effects on their
preferred fuel cycle metrics. Furthermore, the separation of the
simulation engine from the various entities comprising the fuel
cycle allows for easier and more straightforward testing and
benchmarking.

Perhaps one of the strongest motivating factors of a renewed
look at design and collaboration on nuclear fuel cycle simula-
tion is the ability to foster and grow a simulation community.
The proposed simulation framework is being implemented as
CYCLUS [1], a nuclear fuel cycle simulator developed at the
University of Wisconsin - Madison in conjunction with a num-
ber of other collabortors, including the University of Texas at
Austin, the University of Utah, and the University of Idaho.
CYCLUS is has an open-source codebase, allowing other in-
terested developers to use or add to the existing simulation
infrastructure. Critically, the fact that the source code is open
allows for transparent investigation of the inner workings of
the simulation. For example, other’s efforts to benchmark their
findings agaisnt a CYCLUS simulation are designed to be rela-
tively easy in comparison to closed-source simulators, given the
availability of the source code, input data, and output database.

BACKGROUND

Fuel Cycle Simulators

Previous implementations of fuel cycle simulators have var-
ied both in methodology and distribution platform. The general
purpose of all simulators is to model the flow of material among
a variety of facilities in order to determine the viability of vari-
ous proposed fuel cycles and their relative performance vis-a-
vis a variety of metrics including resource utilization, costs, and
proliferation resistance. However, there are a few key choices
that have been historically made by all simulation developers,



including: what program or language to use, how to determine
which facilities to build, when to build them, how to deter-
mine the flow of material when there are competing sources
or sinks for that material, whether to model them individually,
and at what level of fidelity physics should be modeled in the
simulation (e.g., should material decay or should it not). One
could describe these are the major design choices for simulation
development teams to assess, and in general approaches are
taken which span the gamut from the computationally “easy”
to the computationally “complex” and the spectrum of almost
full user-control to more substantial use of automated decision
making.

The majority of fuel cycle simulation codes have been de-
veloped using a system dynamics platform. CAFCA [2], de-
veloped at MIT, was originally a MATLAB application, but is
now written in the commercial software VENSIM [3]. VISION
[4], developed by INL and originally based off of of the DY-
MOND code [5], has its simulation infrastructure written in the
commercial software Powersim [6]. DANESS [7], originally
developed at ANL and now moved to LISTO bvba in Belgium,
is an iThink [8] application. Simulators that aren’t written as
commercial system dynamics applications tend to fall on ei-
ther side of the spectrum of computational tools. COSI [9],
for instance, is developed by the French CEA in Java. Cyclus
[1], developed at UW-Madison, is a C++ application which
provides an XML-input front end and SQL backend. Other fuel
cycle simulations tend to be focused more on scoping calcula-
tions, for which spreadsheets can be applicable [10]. In general,
all simulators (unless otherwise specified above) use Microsoft
Excel to manage both input and output.

After choosing a development platform, the next basic sim-
ulation design decision deals with the modeling of facilities
that act as nodes in a fuel-cycle material flow graph. There are,
generally, two strategies that are taken by simulators: model
aggregate fleets of facilities or model individual facilities. The
former approach is taken by both CAFCA and VISION [11, 12].
Both of these system dynamics based simulators keep track of
general fleet parameters as a function of time, e.g. the number
of facilities under construction, in operation, or being decom-
missioned. Furthermore, they model the material flows into
and out of the fleets; however, there is no distinction between
individual facilities – the fleets themselves are modeled by the
system dynamics equations. COSI, while not a system dynam-
ics code, also models the reactors in their simulation as a fleet
[13]. DANESS, though, takes a different tactic, tracking the
history of each facility individually [14]. Adding this capability,
for instance, allows DANESS to model individual reactors as
unfueled or ’on hold’.

Fuel cycle simulator developers then must decide how build-
ing decisions are to be made in their models. For example, if
both fast reactor and light water reactor technologies are avail-
able to the simulation at some time, how should it decide which
to build, given that there is some demand? This decision is also
necessary for supporting facilities, e.g. separations and fuel

fabrication facilities, if they are modeled explicitly. Most simu-
lators follow one of three paths: allow user-defined deployment,
provide a heuristic that automates deployment, or combine the
two. CAFCA, for instance, guarantees that reactors can be
fueled for their entire lifetime, and thus builds reactors given a
priority ordering, skipping candidates if a look-ahead heuristic
determines there is not enough fuel [11]. In general, reactors
in CAFCA are built to minimize light water reactor spent fuel
(i.e., fast reactors are built if possible). VISION follows a simi-
lar path, incorporating user-defined reactor preferences before
applying an automated heuristic based on fast reactor fuel avail-
ability [12]. Neither VISION nor CAFCA allows reactors to be
built without guaranteed fuel availability. DANESS again takes
a slightly different approach. It allows users to define reactor
demand and will instantiate reactors based on a look-ahead
heuristic that investigates whether a certain percentage of the
reactor’s required fuel is currently available. This is effectively
a ’middle of the road’ solution, that guarantees reactor fuel
availability up to some user-defined percentage [15]. Accord-
ingly, reactors that aren’t fueled go ’on-hold’, as previously
discussed. It should be noted that each of the deployment de-
cisions is based on a “class” of reactor (e.g. a PWR), and that
each simulator described above has some limit on the number
of “classes” of reactors. Importantly, each of these deployment
methodologies are “hard-coded” into each simulator, i.e., they
are the basis of the simulator framework and can not be changed
in general.

The final two classes of simulation design decisions deal
with the detail at which one wishes to model the actual materi-
als in the simulation and at what level of detail to make material
flow decisions based on those materials. Most simulators gen-
erally model physics at a basic level. For example, the decay
of isotopes is available but not used in CAFCA simulations [2].
Material flow decisions are generally made based on aggregate
quantities, e.g. kilograms of plutonium or transuranics [11].
VISION allows for decay of isotopics in its simulations, but
does not generally make material flow decisions based on the
updated isotopics, instead depending on user-defined input and
output reactor fuel recipes [4]. COSI tends to take the most
rigorous approach in this regard. It bases material flow deci-
sions on equivalence methods, and models in-pile and decay
calculations explicitly using a combination of depletion and
transport codes, including CESAR, APOLLO, and ERANOS
[16]. While COSI models isotopic transmutation and decay in
order to inform their reactor fuel availability calculations, other
simulators generally model isotopic changes to inform output
metrics, such as repository capacity (which is a heavy function
of input material radiotoxicity and decay heat).

Agent Based Supply Chain Simulation

Taking a step back from a review of available fuel cycle
simulators, an investigation of the underlying structure of the
supply-demand modeling paradigm shows that it is, in fact, a



subset of the family of supply-chain models. Further, if one
wishes to model individual facilities, each of which can make
independent decisions, one naturally arrives at the concept of
agent-based modeling.There are a number of agent-based sup-
ply chain frameworks and implementations available in the
literature with varying levels of accessibility due to proprietary
considerations [17, 18, 19, 20]. However, the nuclear fuel cy-
cle presents a few unique characteristics not explicitly treated
in the literature. Perhaps the most difficult consideration we
have identified is the need to specify target fuel recipes and
match suppliers and consumers based on the requested recipe,
i.e. there are both quantity and quality constraints placed on a
requested commodity. An additional difficulty arises with the
enforcement of regional-boundary constraints (e.g. prohibiting
HEU trade between regions) and inter-enterprise preferences.
Julka [18] discusses an extension to the normal supply-demand
matching paradigm that allows for initial information to be pro-
vided to consumers before supply and demand are matched. A
full discussion of this adaptation is provided in the methodology
section.

Mathematical Programming

The general suite of techniques we propose to use to solve
the supply-demand matching problem at each time step lie in
the realm of mathematical programming. For general linear
optimization problems (i.e., those without special structure),
the Simplex Method, originally developed by George [21] in
the 1950’s, is a very well studied method for solving linear
programs. It is computationally efficient, effectively solving
the linear program (LP) by moving from feasible solution to
feasible solution in a hill-climbing fashion, guaranteeing a in-
crease in the optimality condition. An LP formulation of the
nuclear fuel cycle is provided in the methodology section. It is
foreseeable that such a formulation may not be adequate for all
simulations because solutions can be provided in a fractional
manner. While this is appropriate for certain fuel cycle ser-
vices (e.g. using a fraction of an enrichment facility’s SWU
capacity), it does not necessarily accurately model reactor or-
ders. Certainly, heuristics can be applied, but mathematical
programming includes a suite of tools that can be used to solve
problems with integer constraints. The analog to the Simplex
Method (i.e., the most ubiquitous method used in practice) for
optimization problems with integer decision variables is the
Branch and Bound Method, first presented by Land and Doig
[22]. It also has been used prolifically in the optimization com-
munity. A mixed integer-linear program (MILP) formulation of
the nuclear fuel cycle is provided in the methodology section.

METHODOLOGY

This section lays out a plan by which a fully agent-based
simulation can be implemented for a generic fuel cycle. The
term “generic” implies that facilities involved are not known

a priori and, accordingly, facilities can be coupled together as
the designer wishes. For example, a designer has the choice to
model a separations facility and advanced fuel fabrication fa-
cility as separate entities whose connected supply and demand
are met by a generic engine, or to model the two facilities as a
single combined and coupled entity. Additionally, the solution
framework for this matching engine must be agnostic regarding
the classes of materials involved. Rather than hard-coding in
constraints and capacities for different material classes, they
are added dynamically based on the entities involved in the
solution. Included is a discussion of the proposal for entity
interaction within the generic fuel cycle simulator framework.
The goal of such a discussion is to identify the different design
decisions made by the authors of the various simulators and to
encapsulate the design decisions into the appropriate entities
in the CYCLUS simulation. CYCLUS is designed to provide
a minimal framework for agent-based simulation while max-
imizing the capability of future developers to adapt reusable
sections of code to implement their own design decisions where
appropriate.

Agent Interaction in CYCLUS

Deciding how a simulation is structured from an interactions
standpoint is a delicate balance of known necessity and per-
ceived future needs. There are basic decisions to make: do you
want a system with discrete material transfers or continuous
material flows? Discrete transfers more closely match reality
and may provide insights in that regard, however the require
more of their modeling apparatus due to messaging needs and
other structures. More complex decisions include how one
wants to determine connections between facilities. Do we as-
sign supplier-consumer pairs to facilities? Do we allow them
to change? Should the facility make such a decision? Should
that decision be affected by any other entities? Tellingly, after
being exposed to a number of different simulators through a
benchmarking exercise, Guerin comments that the “operation
of a fuel cycle model is as much art as science” [15]. These
simulation-engine decisions comprise the art-related portion
of fuel cycle simulation. The goal of any simulator is to make
these decisions in as informed a way as possible according to
domain-level knowledge, taking into account known and per-
ceived requirements. In general, we attempt to minimize the
sheer number of choices made in this regard, instead relying
on well known and well documented practices of computer
scientists and systems engineers.

CYCLUS has an additional goal in that we wish our core
simulation infrastructure to be as flexible as possible. Given a
few basic tenets of agent interaction, other developers should
be able to create a new agent to “plug in” to the simulation.
Accordingly, we must define a minimal set of behaviors to
sufficiently inform the simulation infrastructure to run the sim-
ulation. This freedom allows us to run the simulation program
and attach agents at run time, effectively separating the simu-



lation engine’s functionality from the agents in the simulation.
From an ecosystem point of view, being an open source code
and having such capability allows expansion of the user and
developer base into areas and institutions concerned with se-
curity and privacy. Furthermore, developers could participate
both privately and publicly, e.g. adding general capability to
the CYCLUS core that is needed for some functionality without
specifying the internals. This open-source ecosystem further
provides incentive to develop the agent-based simulation ar-
chitecture. Other developers can concentrate their efforts on
individual agent interaction, effectively encapsulating devel-
oper requirements for learning and interacting with the various
simulation systems. For a more complete discussion on the
ecosystem benefits of the CYCLUS development model, see
[23].

Having decided upon agent-based interactions, one must
determine a way to govern these interactions. We want to mini-
mize agent dependency due to our above discussion, so using
preference-based network flow formulations provide us with a
viable solution technique that provides a consistent interface.
The remainder of this section describes how that market resolu-
tion interface is informed by the agents. Basic agent simulation
interaction, such as entering and leaving the simulation are also
described.

Supply/Demand Parameters

The resolution of supply and demand at any given time step is
the result of the mathematical program techniques discussed in
the subsequent sections; however, there are simulation-engine
details that must be described in order to set up that problem.
The proposed resolution mechanism occurs in nominally three
steps. The agent interactions include consumers and producers
of a set of commodities and progresses is steps or “phases”.
The terminology of this “phase space” is taken from previous
supply chain agent-based modeling work [18].

The first phase allows consumers of commodities to denote
both the quantity of a commodity they need to consume as well
as the target isotopics, or quality. Because the action is techni-
cally telling possible providers what type of product or service
is required by a facility, this phase is termed the “Request for
Bids Phase”. This action is considered a “posting” of demand
to the market exchange. It is possible that multiple commodi-
ties could meet a consumer’s demand. Accordingly, consumers
are allowed to “over-post”, i.e., request a larger quantity of
commodities than they can actually consume. The collection
of commodities and quantities that make up a consumer’s de-
mand is termed a “demand portfolio”, where each demanded
commodity may also be accompanied by a target isotopic com-
position (termed its “quality” in CYCLUS parlance). A capacity
constraint is required to accompany each portfolio, which fa-
cilitates the ability for consumers to “over-post”. Additionally,
if a portfolio is comprised of more than one commodity, the
consumer must additionally provide a cardinal preference over
the set of commodities. At the end of the posting phase, the

market exchange will have a set of demand portfolios for each
consumer.

For example, consider an LWR that can be filled with MOX
or UOX. At a given time period in which it will order fuel, it
would post a demand portfolio to the market exchange com-
prised of a quantity and quality of MOX and a quantity and
quality of UOX. The demand portfolio must also indicate which
fuel type it would prefer, i.e., the cardinal ordering mentioned
above. Another example is that of an advanced fuel fabri-
cation facility which fabricates fuel partially from separated
material that has already passed through a reactor. Fuel as-
semblies produced by the facility are normally comprised of
some prescribed quantity and quality of fissile material and the
remaining volume is filled with fertile material, including de-
pleted uranium from enrichment or reprocessed uranium from
separations. Accordingly, a demand portfolio for that facility
would be comprised of a quantity of depleted uranium, a quan-
tity of reprocessed uranium, a total capacity, and a preference
over the two.

The second phase allows suppliers to “respond” to the set
of consumption portfolios. Each portfolio is comprised of re-
quests for some set of commodities. Accordingly, for each
request, suppliers of that commodity denote production capaci-
ties and an isotopic profile of the commodity they can provide.
This isotopic profile is part of a heuristic mechanism to assign
more fine-grained preferences among suppliers and consumers.
Suppliers are allowed to offer the null set of isotopics as their
profile, effectively providing no information. A supplier may
have its production be constrained by more than one parameter.
For example, a processing facility may have both a through-
put constraint (i.e., it can only process material at a certain
rate) and an inventory constraint (i.e., it can only hold some
total material). Further, the facility could have a constraint on
the quality of material to be processed, e.g., it may be able
to handle a maximum radiotoxicity for any given time step
which is a function of both the quantity of material is processes
but also the isotopic content of that material. The formulation
provided in the following section allows for multiple of such
constraints as long as they are linear functions of the demanded
commodity quantity. This phase is termed the “Bidding Phase”
(analagous to Julka’s Reply to Request for Quote phase[18]),
and at its completion the possible connections between supplier
and producer facilities, i.e., the arcs in the graph of the fuel
cycle exchange, have been established with specific capacity
constraints defined not only by the quantity of commodities that
will traverse the arcs but also by the quality of the commodities.

The third phase of the supply-demand matching operation in-
volves setting preference values for each supplier-consumer arc,
termed the “Preference Assignment Phase”. Supplier-consumer
preferences are used to eventually set arc costs, which drive
the solution of the variation of the multi-commodity transporta-
tion problem. Note that the cost translation technique itself is
a simulation design decision. By this phase, each consumer
has already assigned preferences as a function of commodity



amongst demands in its portfolio. The consumer is now allowed
to inform the solver as to preferences amongst the responses to
each request in each portfolio. From a facility point of view,
the delineation between responses will nominally be made as a
function of the quality of the material in the each response.

Take the reactor example provided above. Given an LWR
request for MOX and UOX, multiple responses may be received
to its request for MOX, each with different isotopic profiles of
the MOX that can be provided. The reactor can then assign
preference values over this set of potential MOX providers.
Another example comes in the case of repositories. A repository
may have a defined preference of material to accept based upon
its heat load or radiotoxicity, both of which are functions of
the quality, or isotopics, of a material. In certain simulators,
limits on fuel entering a repository are imposed based upon
the amount of time that has elapsed since the fuel has exited a
reactor. It is in this phase that the CYCLUS engine would allow
such capability. The time constraint is, in actuality, a constraint
on heat load or radiotoxicity (one must let enough of the fission
products decay). A repository could analyze possible input fuel
isotopics and set the arc preference of any that violate a given
rule to 0, effectively eliminating that arc. Once facilities have
completed their preference assignments, their managers are
able to permute them based on institutional or regional factors,
as explained below.

Facilities

Facilities in CYCLUS are abstracted to either consumers
or suppliers of commodities, and some may be both. Supplier
agents are provided agency by being able to communicate to the
market-resolution mechanism a variety of production capacity
constraints in phase two of the solution setup. Consumer agents
are provided agency by being able to assign preferences among
possible suppliers based on the supplier’s quality of product.
Because this agency is encapsulated for each agent, it is possible
to define strategies that can be attached or detached to the agents
at run-time.

Institutions

Institutions in CYCLUS manage a set of facilities. They are
tasked with the actual instantiation of specific facilities, for
example, it is the institutions job to manage which facilities are
commissioned and decommissioned at the appropriate times.
The goal of including a notion of institutions is to allow an
increased level of detail when investigating regional-specific
scenarios. For example, there exist multi-national enterprises,
such as AREVA, that operate fuel cycle facilities in a variety
of countries, or regions. Furthermore, there are international
governmental organizations, such as the IAEA, which plans
to operate fuel cycle facilities that service other facilities in a
variety of regions, e.g., a fuel bank. Accordingly, institutions
in CYCLUS are able to augment the preferences of supplier-
consumer pairs that have been established in order to simulate

a mutual preference to trade material within an institution or
based on institution-level relationships. Of course, situations
arise in the real world where an institution has the capability to
service its own facilities, but choose to use an outside provider
because of either cost or time constraints, and such a situation
is allowed in this framework as well. It is not immediately
obvious to what degree institutions should be allowed to affect
their managed facilities’ preferences. Accordingly, through the
course of implementation and experience modeling the fuel
cycle with this framework, best practices will be determined.

Regions

Regions in CYCLUS are concerned with meeting certain re-
quirements, e.g. power capacity, fuel cycle service capacity,
etc. The notion of which facilities will meet this capacity is
abstracted away from the region into the set of institutions that
operate in that region. The amount of knowledge a region has
regarding the types of facilities that can meet these external
requirements and the extent to which that knowledge is used for
facility deployment decisions depends on the region’s imple-
mentation. For example, in the case of nuclear power capacity,
any region knows that it needs additional reactors to be built. A
“naive” implementation leaves the building of those reactors to
the institutions that operate in the region. An “informed” imple-
mentation can order which reactors should be built by which
institutions. The fundamental driver for such a design decision
is a desire to abstract the management of facilities away from
the decision of which facilities to build. It is important to note
here that this abstraction allows for different deployment algo-
rithms to be tested and exchanged in the CYCLUS framework
without necessitating changes to the simulation engine, as is
the case with other simulators described in previous sections
and is consistent with the types of simulation design decisions
required to maintain both flexibility and reusability.

Regions are further provided agency by their ability to affect
preferences between supplier-consumer facility pairs in the
third phase of the market resolution algorithm. The ability to
perturb arc preferences between a given supplier and a given
consumer allows fuel cycle simulation developers to model
relatively complex interactions at a regional level. Examples
of such interactions include the notion of tariffs – a region
may prefer that facilities that can trade within its borders do so.
Further, one could model the effect of sanctions – a region may
not allow trade between facilities within its borders and another
specified region. Because material quality information is also
provided via the market resolution procedure, constraints can
be applied on such information. For example, a region could
scan the set of possible material leaving its borders via supplier
transactions. It could then reset preferences of transactions that
violate some decision rule, such as a restriction of plutonium-
based fuels from exiting its boundaries. These principles can
even exist on a spectrum that is a function of either quality (e.g.,
a limit could be placed on 239Pu content) or region (e.g., a
limit could be placed on plutonium-based fuels being provided



to another specific region).

The Generic Fuel Cycle Transportation Problem

Overview

Once a particular instance of a supply and demand commod-
ity market has been described for a given time step, supplying
facilities must somehow be matched with consumer facilities.
It is possible to do this matching in a naive fashion using some
heuristic, and such an approach may be appropriate for some
simulations depending on the level of detail required. How-
ever, we seek a more flexible solution technique that will scale
with the detail needed for each simulation. The mathematical
programming discipline provides a natural fit for such solution
techniques through a standard framework used to describe prob-
lem instances and a standard solution algorithm. Of the special
problem structures enumerated in mathematical programming
texts, the well-studied Transportation Problem provides a good
starting point for the solution framework we seek.

The Transportation Problem is a member of the family of
minimum-cost network flow problems. It is comprised of a set
of suppliers, I, a set of consumers, J, and supplier-consumer
costs, ci, j. Suppliers and consumers form a bipartite graph,
providing the problem with significant underlying structure. Its
formulation is straightforward:

min
z

z = ∑
i∈I

∑
j∈J

ci, jxi, j (1a)

s.t. ∑
j∈J

xi, j ≤ si ∀ i ∈ I (1b)

∑
i∈I

xi, j ≥ d j ∀ j ∈ J (1c)

xi, j ≥ 0 ∀ x ∈ X (1d)

where xi, j is the flow some commodity from i to j. Equation
1b provides a supply-side constraint, stating that the amount
of material leaving a supplier, i, must not be greater than its
supply, si, and Equation 1c provides a demand-side constraint,
stating that the amount of material entering a consumer, j, must
be at least the demanded amount, d j. Equation 1d simply states
that flow along arcs must be positive. Finally, the set X is the
feasible solution space.

The Transportation Problem can be extended to include mul-
tiple commodities, resulting in the Multicommodity Transporta-
tion Problem (MTP):

min
z

z = ∑
i∈I

∑
j∈J

∑
h∈H

ch
i, jx

h
i, j (2a)

s.t. ∑
j∈J

xh
i, j ≤ sh

i ∀ i ∈ I,∀h ∈ H (2b)

∑
i∈I

xh
i, j ≥ dh

j ∀ j ∈ J,∀h ∈ H (2c)

∑
h∈H

xh
i, j ≤ ri, j ∀ i ∈ I, ∀ j ∈ J (2d)

xh
i, j ≥ 0 ∀ x ∈ X (2e)

where, conceptually, the main addition is Equation 2d, which
is termed a “bundle” constraint, limiting the total flow of all
commodities along an arc, (i, j), to some value, ri, j. The MTP
is perturbed by adding special considerations discussed below
to formulate the Generic Fuel Cycle Transportation Problem
(GFCTP).

Linear Program Formulation of the GFCTP

The linear program formulation of the GFCTP involves a set
of players that act in an overarching market. The players are
the supplier and consumer faciliteis involved in the simulation,
i.e., the reactors, fabrication facilities, repositories, etc. In
strict mathematical programming parlance, the GFCTP can be
described as a Multicommodity Transportation Problem with
Side Constraints. Accordingly are a number of departures from
the classical MTP.

To begin, the multicommodity aspect of the problem is not
manifest on arc capacities. Instead, facility demand constraints,
whose equivalent in the MTP are Equation 2c, incorporate a set
of satisfactory commodities, rather than a single satisfactory
commodity. For example, a reactor may be able to accept UOX
or MOX fuel, but has a demand for total fuel. Additionally,
supplier facilities may have a set of constraints on their ability
to supply a given commodity and they may not be able to di-
rectly express those constraints with the unit of the commodity
market, which is generally kilograms of a commodity. Take an
enrichment facility for example. Such a facility has nominally
two constraints: SWU capacity and natural uranium capacity.
The former constraint is a processing constraint, and the latter
is an inventory constraint; however, both are necessary to fully
define the problem. Furthermore, let us note that the output
of this facility is kilograms of enriched uranium. Accordingly,
the above capacities must be translated into units of this output.
Because multiple commodities can satisfy demand, consumers
denote a cost preference over the possible commodities they
consume. Suppliers denote one or more production capacities
for a given commodity which serve as the set of supply ca-
pacities analogous to the normal MCTP (Equation 2b). The
GFCTP-LP formulation is as follows:



min
z

z = ∑
h∈H

∑
i∈I

∑
j∈J

ch
i, jx

h
i, j (3a)

s.t. ∑
j∈J

βi,k(qh
j)x

h
i, j ≤ si,k ∀ k ∈ Kh

i ,∀ i ∈ I,∀h ∈ H (3b)

∑
i∈I

∑
h∈H j

xh
i, j ≥ d j(H j) ∀ j ∈ J (3c)

xh
i, j ≥ 0 ∀ x ∈ X (3d)

The sets and variables involved are described in Tables 1 and
2. Note that H j is a subset of the commodities:

H j ⊆ H ∀ j ∈ J (4)

Set Description
H all commodities
I all producers
J all consumers
X the feasible set of flows between producers and

consumers
Kh

i the set of constraining capacities for producer i of
commodity h

H j the set of satisfying commodities for consumer j
TABLE 1: Sets Appearing in the GFCTP-LP Formulation

Variable Description
ch

i, j the unit cost of commodity h for producer i
and consumer j

xh
i, j a decision variable, the flow of commodity h

for producer i and consumer j
qh

j the requested quality of commodity h by con-
sumer j

βi,k(qh
j) a capacity translation function for capacity

constraint k of producer i given qh
j

sh
i,k a supply capacity of producer i corresponding

to capacity constraint k of commodity h
d j(H j) the total demand of consumer j over the set

of satisfying commodities H j

TABLE 2: Variables Appearing in the GFCTP-LP Formulation

This formulation deviates from the normal MCTP formula-
tion via the expansion of capacity constraints (Equation 3b) and
the inclusion of a constraint allowing multiple commodities
that are able to meet the demand of a producer (Equation 3c).
The former constraint maintains the multi-commodity nature
of the formulation.

Under certain conditions, the GFCTP-LP will result in a sim-
pler problem. The first possible condition is that each consumer
could have its demand met by only one commodity, i.e.,∣∣H j

∣∣= 1∀ j ∈ J. (5)

In such a situation, the GFCTP-LP can be transformed into
an analog of the separable transportation problem as shown in

[24]. Such a condition will effectively allow one to solve N
different instances of a single-commodity problem, where N is
the cardinality of H.

The second simplifying condition is if the constraining ca-
pacity set has a cardinality of unity, i.e.,∣∣∣Kh

i

∣∣∣= 1∀ i ∈ I, ∀h ∈ H. (6)

If both Equation 6 and 5 hold, then the GFCTP-LP is in
fact the a normal Transportation Problem, because the quality
translation function (βi,k(qh

j)) translates to a constant at solution
time.

These simplifications are important to the computation time
required to solve the resulting problem instance. The general
solution technique for LPs is the Simplex Method, as previ-
ously described. Klee and Minty show that in the worst case,
the Simplex Method will execute in exponential time [25],
but in practice it is generally considered very computationally
efficient. If the problem can be simplified to a TP, then the
Transportation Simplex Method can be used [26].

Capacity Translation Function and Constraints Example
The notion of a capacity translation function is something that
has been introduced out of necessity due to the complexity
of the GFCTP. Accordingly, an example will help clarify its
purpose. This time can also be used to provide an example
of a producer with multiple capacity constraints for a given
commodity.

Take, for example, an enrichment facility. Such a facility
produces the commodity “Enriched Uranium (EU)”. This fa-
cility has two constraints on its operation for any given time
period: the amount of Separative Work Units (SWU) that it
can process, senr,SWU and the total natural uranium (NU) feed it
has on hand, senr,NU . Note that neither of these capacities are
measure directly in the units of the commodity it produces, i.e.,
kilograms of enriched uranium (EU). The set of values for Kh

i
for this facility are:

KEU
enr = {SWU,NU} (7)

Consider a set of requests for enriched uranium that this
facility can possibly meet. Such requests have, in general, two
parameters: Pj, the total product quantity (in kilograms), and ε j,
the product enrichment (in w/o U-235). The notation for enrich-
ment, ε j, is chosen over its normal form, xp, to limit confusion
with the LP notation of material flow, xh

i, j. For the purposes
of this constraint set, the quality of material in question is its
enrichment, i.e.,

qEU
j ≡ ε j. (8)

These values are set during a prior phase of the overall match-
ing algorithm, and can therefore be considered constant. Fur-
ther, let us note that, in general, an enrichment facility’s op-
eration, or rather its capacity, is governed by two parameters:



ε f ,enr, the fraction of U-235 in its feed material, and εt,enr, the
fraction of U-235 in its tails material. These parameters deter-
mine the amount of SWU required to produce some amount of
enriched uranium:

SWU = P(V (ε j)+
ε j− ε f ,enr

ε f ,enr− εt,enr
V (εt,enr)

−
ε j− εt,enr

ε f ,enr− εt,enr
V (ε f ,enr))

(9)

P in Equation 9 is the amount of produced enriched uranium,
and V (x) is the value function,

V (x) = (1−2x) ln
(

1− x
x

)
(10)

Utilizing the above equations, one can denote the functional
forms of the arguments of this facility’s two capacity con-
straints.

βenr,NU (ε j) =
ε j− εt,enr

ε f ,enr− εt,enr
(11)

βenr,SWU (ε j) = V (ε j)

+
ε j− ε f ,enr

ε f ,enr− εt,enr
V (εt,enr)

−
ε j− εt,enr

ε f ,enr− εt,enr
V (ε f ,enr)

(12)

These constraints correspond to the per-unit requirements for
enriched uranium of natural uranium feed and SWU. Finally,
we can form the set of constraint equations for the enrichment
facility by combining Equations 3b, 8, 11, and 12.

∑
j∈J

βenr,NU (ε j) xEU
enr, j ≤ senr,NU (13)

∑
j∈J

βenr,SWU (ε j) xEU
enr, j ≤ senr,SWU (14)

Satisfying Commodity Set Example The other departure
the GFCTP-LP takes from the normal MCTP formulation is
the location of its multicommodity dependence. As presented
above, the MCTP formulation includes a multicommodity arc
capacity constraint, Equation 2d. There is no direct analog
in the GFCTP, i.e., transportation arcs are assumed separate
for separate commodities. There is still a notion of multicom-
modity dependence, however, via Equation 3c. This constraint
models a situation in which different commodities can satisfy a
consumer’s demand.

Take the enrichment facility example, expanding on the pre-
vious discussion. Note that an enrichment facility takes feed
uranium and then enriches its U-235 content. This feed ura-
nium can come from different sources which have different
feed enrichments. In practice, the most likely sources of feed

uranium are natural uranium (NU) or recycled uranium (RU),
a product of reprocessing light water reactor fuel. Recycled
uranium may be advantageous to use if it has a higher weight
percent of U-235 than does natural uranium. We can now state
the set the values for H j for this facility:

Henr = {NU,RU} (15)

Of course, the facility must define some preference function
over the set of satisfying commodities. In this example, re-
cycled uranium is more valuable because of its higher U-235
content, which translates into a (relatively large) SWU reduc-
tion in order to meet identical enrichment requests. This prefer-
ence ordering is encapsulated in the cost function in Equation
3a. The nature of the cost function in the CYCLUS simulation
environment is nontrivial and explained further in this section.

Mixed Integer-Linear Program Formulation of the GFCTP

The previous linear program (LP) formulation of the Generic
Fuel Cycle Transportation Problem fully describes many of the
types of transactions that arise at any given time step. However,
it importantly glosses over the critical case of reactor fuel or-
ders, which comprise a large amount of material orders within
the simulation context. Specifically, it allows reactor fuel orders
to be met by more than one supplier with an arbitrary amount
of the order met by each supplier. Put another way, the LP
formulation does not contain the discrete material information
required to model the transaction of fuel assemblies. Such detail
is not necessary in every simulation, but we wish to allow this
advanced modeling for those that do need it. In order to provide
this capability of quantizing orders, binary decision variables
must be introduced and integer programming techniques must
be utilized to solve the resulting mixed integer-linear program.

It should be noted that the addition of integer variables
changes both the complexity of the formulation and the com-
plexity of the solution technique. Such a change requires a
Mixed Integer-Linear Program (MILP) formulation and solu-
tion via the branch-and-bound method which solves NP-Hard
combinatorial optimization problems whereas the Linear Pro-
gram (LP) version requires the simplex method which is much
more efficient.

The updated formulation is presented below. The key dif-
ference is the inclusion binary variables yh

i, j, which are 1 if
producer i trades commodity h with consumer j and constants
x̃h

j , which denote the quantity of a quantized order. Further
a new set is introduced, Je, the set of consumers who require
quantized, or exclusive, orders. The original set of consumers,
i.e., those who allow partial orders, are denoted Jp. These two
sets constitute the set of all consumers.

J = Jp∪ Je (16)

The Generic Fuel Cycle Transportation Problem with Exclu-
sive Orders (GFCTP-E) formulation follows:



min
z

z = ∑
h∈H

∑
i∈I

∑
j∈Jp

ch
i, jx

h
i, j + ∑

h∈H
∑
i∈I

∑
j∈Je

ch
i, jy

h
i, j x̃

h
j (17a)

s.t. ∑
j∈Jp

βi,k(qh
j)x

h
i, j + ∑

j∈Je

βi,k(qh
j)y

h
i, j x̃

h
j ≤ sh

i,k

∀ i ∈ I, ∀ k ∈ Kh
i ,∀h ∈ H (17b)

∑
i∈I

∑
h∈H j

xh
i, j ≥ d j(H j) ∀ j ∈ Jo

(17c)

∑
i∈I

∑
h∈H j

yh
i, j x̃

h
j ≥ d j(H j) ∀ j ∈ Je

(17d)

∑
h∈H

∑
i∈I

yh
i, j = 1 ∀ j ∈ Je

(17e)

xh
i, j ≥ 0 ∀ x ∈ X

(17f)

yh
i, j ∈ {0,1} ∀ y ∈ Y

(17g)

The sets and variables involved are described in Tables 3 and
4. Note that H j is a subset of the commodities:

H j ⊆ H ∀ j ∈ Jp,∀ j ∈ Je (18)

Set Description
H all commodities
I all producers

Jp all consumers who accept partial orders
Je all consumers who accept only exclusive orders
X the feasible set of flows between producers and

consumers
Y the feasible set of exclusive flows between produc-

ers and consumers
Kh

i the set of constraining capacities for producer i of
commodity h

H j the set of satisfying commodities for consumer j
TABLE 3: Sets Appearing in the GFCTP-E Formulation

The examples of the various constraints from the previous
section also apply here. The only difference is the notion of the
binary variables, yh

i, j, which denote a sort of on/off switch as
to whether a consumer’s entire requested amount of material is
met by a supplier or not.

It should be noted that this advanced formulation adds sig-
nificant complexity to the resolution method at every time step.
However, simple heuristics exist. The most common of them
is to solve a relaxed version of the problem in the form of a
linear program, and to round values to form an integer solu-
tion. The exploration of additional heuristics will be performed
based on the outcome of the implementation and analysis of
this formulation in the CYCLUS simulation environment.

Variable Description
ch

i, j the unit cost of commodity h for producer i
and consumer j

xh
i, j a decision variable, the flow of commodity h

for producer i and consumer j
qh

j the requested quality of commodity h by con-
sumer j

yh
i, j a binary decision variable that is equal to 1 if

there is flow from producer i to consumer j of
commodity h

x̃h
j the amount of commodity h requested by con-

sumer j
βi,k(qh

j) a capacity translation function for capacity
constraint k of producer i given qh

j
sh

i,k a supply capacity of producer i corresponding
to capacity constraint k of commodity h

d j(H j) the total demand of consumer j over the set
of satisfying commodities H j

TABLE 4: Variables Appearing in the GFCTP-E Formulation

Cost Function

In any network flow problem, of which transportation prob-
lems are a subset, the cost of transporting commodities is what
drives the solution. Accordingly, an accurate cost function
is necessary to determine an accurate solution. Because the
CYCLUS environment is still a nascent simulation platform,
accurate pricing metrics, and what such metrics even are in
terms of a centuries-long fuel cycle simulation, are generally
difficult to ascertain, with the current standard source being
the Advanced Fuel Cycle Cost Basis report [27]. Accordingly,
the cost function is currently a measure of simulation entity
preference, rather than a concrete representation of cost.

The notion of preference extends the work of Oliver’s affin-
ity metric [28]. The preference metric is generally consumer
centric, i.e., consumers have a preference over the possible
commodities that could meet their demand. For example, a
reactor may be able to use UOX or MOX fuel, but may prefer
to use MOX fuel. Such a preference differential allows the
projection of real-world cost into the simulation. Additionally,
the managers of a given facility, which in the CYCLUS simula-
tion environment include its Institution and Region, also exert
an influence over its preference. An obvious example is the
concept of affinities given in [28]. In Oliver’s work, an affinity
or preference existed between facilities in “similar” institutions
in order to drive the trading between institutions as a simple
model of international relations. This idea is expanded upon
to cover a facility’s other managers and the commodities them-
selves. Additionally, a preference can be delineated between
the proposed qualities of the same commodity from different
vendors, e.g. if two vendors of MOX fuel exist. Finally, the
notion of a preference is a positive one, and we require a notion
of cost to solve the minimum-cost formulation of the multicom-
modity transportation problem with side constraints. Therefore



one must utilize a translation function.
Formally, we define a preference function, αi, j(h), which

is a cardinal preference ordering over a consumer’s satisfying
commodity set.

αi, j(h)∀i ∈ I ∀h ∈ H j (19)

This ordering is a function both of the consumer, j, and
producer, i. The dependence on producer encapsulates the rela-
tionship effects due to managerial preferences. We then define
a cost translation function, f , that operates on the commodity
preference function to produce an appropriate cost.

f : αi, j(h)→ ch
i, j (20)

A naive implementation, and perhaps all that is necessary for
a proof-of-principle, is to define f as an inversion operator.

f (x) =
1
x

(21)

The necessity for complexity of this translation function is
not immediately obvious and an analysis will be performed to
understand its impact.

RESULTS & CONCLUSIONS

This paper presented a generic methodology for modeling
fuel cycle simulation entity interactions. The work was mo-
tivated by the desire to provide a flexible platform on which
one could explore a variety of fuel cycles without requiring
simulation-engine level changes in the underlying code base.
Furthermore, this flexible platform is available as an open
source project, allowing any developer access to the simulation
engine while also allowing for cloistered development at sites
with sensitive information.

Mathematical programming techniques were leveraged to
allow such an encapsulation of simulation engine, abstracting
away the notion of hard-coded connections between facilities.
Two strategies were provided, one that runs at very quick time
scales and can be adjusted via simple heuristics to model in-
dividual interactions using a linear programming formulation.
A more advance, and also more computationally time consum-
ing, approach was also provided for more detailed simulations,
utilizing a mixed integer-linear programming approach.

Future work will concentrate first on implementing the pro-
posed approach in the CYCLUS code base, building upon
the already-existing agent-interaction simulation infrastructure.
Concurrently, the market resolution algorithm will be bench-
marked against other fuel cycle simulation codes in order to
provide a basic level of confidence in it as well as to inform both
the CYCLUS development group and the wider simulation com-
munity as to the relative strengths and weaknesses in a generic
approach, rather than modeling specific fuel cycles explicitly.
Additional work on the CYCLUS simulation engine will also
continue, and will involve an incorporation of a graphical user

interface front and back end, effectively removing the need to
physically alter XML files or investigate SQL databases.

ACKNOWLEDGMENTS

This research is being performed using funding received
from the DOE Office of Nuclear Energy’s Nuclear Energy
University Programs. The author thanks the NEUP for its
generous support.

REFERENCES

1. P. WILSON, M. GIDDEN, K. HUFF, and R. CARLSEN,
“Cyclus: A Nuclear Fuel Cycle Code from the
University of Wisconsin Madison,” (June 2012),
http://cyclus.github.com/.

2. L. GUERIN and M. KAZIMI, “Impact of Alternative
Nuclear Fuel Cycle Options on Infrastructure and Fuel
Requirements, Actinide and Waste Inventories, and Eco-
nomics,” Technical Report MIT-NFC-TR-111, MIT Center
for Advanced Nuclear Energy Systems (CANES), Cam-
bridge, MA, United States (Sep. 2009).

3. P. VENSIM, “Ventana Systems, Inc,” Avaiable at:
http://www. vensim. com (2010).

4. J. JACOBSON, A. YACOUT, G. MATTHERN, S. PIET,
D. SHROPSHIRE, R. JEFFERS, and T. SCHWEITZER,
“Verifiable Fuel Cycle Simulation Model (VISION): A Tool
for Analyzing Nuclear Fuel Cycle Futures,” Nuclear Tech-
nology, 172, 157–178 (Nov. 2010).

5. A. MOISSEYTSEV, “DYMOND, a Dynamic Model of
Nuclear Development,” Argonne National Laboratory In-
ternal Report (2001).

6. P. STUDIO, “Powersim Software AS,” (2003).
7. V. D. DURPEL, A. YACOUT, D. WADE, T. TAIWO, and

U. LAUFERTS, “DANESS V4.2: Overview of Capabili-
ties and Developments,” in “Proceedings of Global 2009,”
Paris, France (Sep. 2009).

8. B. RICHMOND, S. PETERSON, K. CHICHAKLY,
W. LIU, and J. WALLIS, “Ithink Software,” Isee Systems
Inc, Lebanon NH (2004).

9. L. BOUCHER and J. P. GROUILLER, “"COSI" : A Sim-
ulation Software for a Pool of Reactors and Fuel Cycle
Plants,” in “Fuel Cycle and High Level Waste Manage-
ment,” Beijing, China (May 2005).

10. M.-A. BRUDIEU, “Evaluation of Waste Streams associ-
ated with LWR Fuel Cycle Options – Focus on Steady State
Recycling and Fabrication of PWR MOX and Recycled
UOX fuel,” (Jun. 2011).

11. R. BUSQUIM E SILVA, M. KAZIMI, and P. HEJZLAR,
“A System Dynamics Study of the Nuclear Fuel Cycle



with Recycling: Options and Outcomes for the US and
Brazil,” Tech. Rep. MIT-NFC-TR-103, MIT Center for
Advanced Nuclear Energy Systems (CANES), Cambridge,
MA, United States (Nov. 2008).

12. T. M. SCHWEITZER, “Improved Building Methodology
and Analysis of Delay Scenarios of Advanced Nuclear Fuel
Cycles with the Verifiable Fuel Cycle Simulation Model
(VISION),” (2008).

13. C. COQUELET-PASCAL and C. KIEFFER, “Validation
of Physical Models Used in Scenarios Studies by Coupling
COSI with ERANOS Package,” in “Proceedings of Global
2011,” Makuhari, Japan (Dec. 2011).

14. L. V. D. DURPEL, A. YACOUT, D. WADE, and
H. KHALIL, “Daness dynamic analysis of nuclear system
strategies,” in “Global 2003: Atoms for Prosperity: Up-
dating Eisenhouwer’s Global Vision for Nuclear Energy,”
New Orleans, LA, United States (Nov. 2003).

15. L. GUERIN, L. VAN DEN DURPEL, B. DIXON,
L. BOUCHER, and M. KAZIMI, “A Benchmark Study
of Computer Codes for System Analysis of the Nuclear
Fuel Cycle,” Tech. Rep. MIT-NFC-TR-105, MIT (Apr.
2009).

16. M. MEYER and L. BOUCHER, “New Developments on
COSI 6, the Simulation Software for Fuel Cycle Analysis,”
in “Proceedings of Global 2009,” Paris, France (Sep. 2009).

17. J. SWAMINATHAN, S. SMITH, and N. SADEH, “Mod-
eling Supply Chain Dynamics: A Multiagent Approach,”
Decision Sciences, 29, 3, 607–632 (Jul. 1998).

18. N. JULKA, R. SRINIVASAN, and I. KARIMI, “Agent-
based supply chain management-1: framework,” Comput-
ers & Chemical Engineering, 26, 12, 1755–1769 (2002).

19. D. J. VAN DER ZEE and J. VAN DER VORST, “A model-
ing framework for supply chain simulation: Opportunities
for improved decision making,” Decision Sciences, 36, 1,
65–95 (2005).

20. D. C. CHATFIELD, J. C. HAYYA, and T. P. HARRISON,
“A multi-formalism architecture for agent-based, order-
centric supply chain simulation,” Simulation Modelling
Practice and Theory, 15, 2, 153–174 (2007).

21. G. B. DANTZIG, A. ORDEN, and P. WOLFE, “The gener-
alized simplex method for minimizing a linear form under
linear inequality restraints,” Pacific Journal of Mathemat-
ics, 5, 2, 183–195 (1955).

22. A. H. LAND and A. G. DOIG, “An automatic method of
solving discrete programming problems,” Econometrica:
Journal of the Econometric Society, pp. 497–520 (1960).

23. K. D. HUFF, P. P. WILSON, and M. J. GIDDEN, “Open
Architecture and Modular Paradigm of Cyclus, a Fuel Cy-
cle Simulation Code,” in “Transactions of the American
Nuclear Society,” (2011), vol. 104, p. 183.

24. D. P. BERTSEKAS, Network optimization: continuous and
discrete models, Athena Scientific Belmont, Massachusetts
(1998).

25. V. KLEE and G. J. MINTY, “How good is the simplex

algorithm,” Tech. rep., DTIC Document (1970).
26. R. K. AHUJA, T. L. MAGNANTI, and J. B. ORLIN, “Net-

work flows: theory, algorithms, and applications,” (1993).
27. D. E. SHROPSHIRE, K. A. WILLIAMS, W. B. BOORE,

J. D. SMITH, B. W. DIXON, M. DUNZIK-GOUGAR,
R. D. ADAMS, and D. GOMBERT, “Advanced Fuel Cycle
Cost Basis,” Tech. rep. (Aug. 2009).

28. K. M. OLIVER, GeniusV2: Software Design and Mathe-
matical Formulations for Multi-Region Discrete Nuclear
Fuel Cycle Simulation and Analysis, Ph.D. thesis, Univer-
sity of Wisconsin-Madison (2009).


