
Once-Through Benchmarks with CYCLUS, a Modular, Open-Source Fuel Cycle Simulator

Matthew J. Gidden, Paul P.H. Wilson, Kathryn D. Huff, Robert W. Carlsen
Department of Nuclear Engineering & Engineering Physics, University of Wisconsin - Madison, Madison, WI, 53703

gidden@wisc.edu

INTRODUCTION

The CYCLUS project, based at the University of Wisconsin
- Madison, is an open source platform for exploring the long-
term impact of alternative nuclear fuel cycles. The CYCLUS

core provides the infrastructure for an agent-based approach,
allowing user-provided modules to define the behavior of fuel
cycle facilities as they interact to exchange materials. An im-
portant consequence of this approach is that innovative facility
and material exchange concepts can be introduced to a consis-
tent framework allowing for more rigorous comparison. The
CYCLUS team has recently grown and now incorporates a vari-
ety of expertise: output visualization capability through collab-
oration with the University of Utah, server-client communica-
tion via the University of Idaho, input visualization and control
with the University of Texas - Austin, and social communica-
tion expertise through collaborators at UW-Madison to assist
the mission-critical goal of relevancy vis-à-vis policy makers.
Accordingly, the CYCLUS project is expanding efforts in the
realms of both structural capability and benchmarking calcula-
tions.

A series of once-through fuel cycle scenarios are being con-
ducted using the CYCLUS core and accompanying modules.
Where needed, additional modules have been added, includ-
ing a region model that intelligently makes building decisions
given a demand function. The results of these scenarios are
then compared with VISION [1] to provide a benchmark of
the CYCLUS results.

CYCLUS DESIGN AND DEVELOPMENT

The paradigm under which CYCLUS has been developed
and is distributed is unique and offers a number of advantages
regarding its potential wide-spread adoption by a diverse user
base. CYCLUS is an open source collection of libraries that
provides out-of-the-box capability as well as a platform on
which to develop additional modules. At present, the CYCLUS

suite includes a core library, a module development toolkit,
and a basic module pack. The module development toolkit in-
cludes a growing collection of standard and commonly used ca-
pabilities, such as an interface to optimization problem solvers
and resource buffers for storing inventories.

Open Development

As one of the leading principles guiding the development of
CYCLUS, an open-source repository provides a high degree of
flexibility and a large amount of exposure to potential collab-
orators and developers. The CYCLUS repository is publicly

available via GitHub [2]. A number of tools are available
to CYCLUS developers in order to maintain software develop-
ment best-practices, including distributed version control, au-
tomatic documentation, and in-depth issue management. Ad-
ditionally, CYCLUS developers have taken advantage of exist-
ing, external open-source libraries in order to conform to cur-
rent standards, including an expansion of the C++ standard li-
brary and fully benchmarked linear and integer programming
solvers. Perhaps the most important attribute of the open devel-
opment paradigm is that it allows for unfettered access to the
CYCLUS core and basic module source code. Combined with
modular software development, CYCLUS is an easily transfer-
able framework on which to build a strong fuel cycle simula-
tion community.

Dynamic Module Capability

Incorporation of dynamically loadable, independently con-
structed modules is another key design concept in CYCLUS.
Whereas the connections between staticly loaded libraries is
determined at compile time, dynamically loaded libraries are
linked at run time. This allows for the core simulation en-
gine comprising CYCLUS to be physically separate from the
various modules determining the specific behavior that occurs
in each simulation. Because interaction between the core and
modules occurs via dynamic linking, module development is
encapsulated and can be performed without involving the simu-
lation engine, increasing efficiency and decreasing the overall
programming experience required. This separation not only
allows for multiple developers to work towards a common
goal, e.g. fully describing a target scenario, but also assists
in separating simulation concerns into reasonably sized, inde-
pendently testable modules.

Optimization

The CYCLUS project has recently added a linear, integer,
and mixed integer program wrapper named CYCLOPTS [3] to
its tool set. CYCLOPTS relies on the open-source solver Coin-
OR Branch and Cut [4], providing a simple interface to de-
scribe such optimization problems. At the present time, de-
velopers have the ability to define a set of variables and to
describe an objective function and series of constraints that uti-
lize some subset of those variables. Variables currently come
in two flavors, integer and linear, corresponding to their respec-
tive solution techniques. Additional work will be performed to
add cutting plane support as well as a suite of unit tests.

Transactions of the American Nuclear Society, Vol. 107, San Diego, California, November 11–15, 2012

264 Nuclear Fuel Cycle Resources, Sustainability, Reuse, and Recycle



VERIFICATION AND TESTING

Core Functionality Benchmarks

To verify the functionality of the CYCLUS core, basic prob-
lems using a single reactor type were performed and compared
to results from both VISION and GENIUS [5], another fuel cy-
cle simulator and predecessor to CYCLUS. Table 1 describes
the parameters varied in the functionality benchmark.

Problem No. No.Reactors Growth Type
1 1 none
2 10 none
3 1 linear
4 1 exponential

TABLE 1: Core Functionality Benchmarking Parameters.

Once-Through Fuel Cycle Benchmarks

Once-through simulation results were compared with sim-
ilarly defined scenarios in VISION. For CYCLUS, a subset
of real-world facilities and their interactions were included:
mines, enrichment facilities, reactors, and storage facilities. In
order to drive the simulation, an electricity demand function
is provided to the simulation, which determines the supply re-
quirement for reactors at a given time step. Once the simula-
tion is complete, an analysis of material flows and facility de-
ployment as a function of time is provided. Of specific concern
with respect to the once-through fuel cycle is long term used
fuel production and the corresponding storage requirements.

Scenario Construction

Reactor deployment decisions are driven by the region in
which the reactors exist. An electricity demand is defined for
that region, either as a linear or exponential function. The re-
gion is also provided with a set of available facilities (reactors)
that can meet this demand. At any time step in which there
exists a demand gap, i.e. there exists more demand than sup-
ply, a build decision is made. This decision is modeled as the
following integer program:

min ∑
i∈I

ni ∗ ci (1a)

s.t. ∑
i∈I

ni ∗φi ≥ Φ (1b)

ni ∈ [0,∞) ∀ i ∈ I (1c)

ni integer ∀ i ∈ I (1d)

where Φ is the unmet demand, I is the set of facilities capable
of meeting the demand, and, for each facility in I, ci is the cost
of building, and φi is the nameplate capacity. Finally, ni is the
optimized number of facilities to build of type i.

While electricity demand directly corresponds to reactor
deployment, supporting facilities, e.g. enrichment facilities,

mines, and storage facilities, depend on overall reactor fuel
input and output requirements. There are multiple strategies
that can be used to determine supporting facility deployment,
of which a minimal constraint approach is first analyzed fol-
lowed by a supply-demand constraint approach, i.e. when the
demand for a resource, e.g. fresh fuel, reaches a percentage of
the total supply, a facility meeting that demand is deployed.

Benchmarking and Parameter Variation

VISION uses an Excel spreadsheet input paradigm which
allows one to develop new scenarios or vary the parameters of
the provided “Base Case Scenarios”. The once-through base
case scenario is used and some of its corresponding parame-
ters are varied in order to define a relative benchmark between
CYCLUS and VISION. Specifically, the following parameters
are varied:

• number of reactor types (e.g. LWRs and HWRs)

• electricity demand rate

• storage availability date (i.e. when a repository is avail-
able)

RESULTS & CONCLUSIONS

Results

CYCLUS has performed well in early verification compar-
isons with VISION. Results of the core functionality bench-
mark problems, which report total mass ejected from reactors
as a function of time, are shown below in Fig. 1 and Fig. 2;
note that the benchmark values used for VISION and GENIUS
have been previously reported in Oliver2009 [6].

Fig. 1: Results from Problem 1.

A fundamental and expected result from this work is the ef-
fect of continuous material flow simulators, such as VISION,
versus the discrete nature of GENIUS and CYCLUS. This dif-
ference accounts for the small discrepancies during the final
core offload(s) [6].

Transactions of the American Nuclear Society, Vol. 107, San Diego, California, November 11–15, 2012

265Nuclear Fuel Cycle Resources, Sustainability, Reuse, and Recycle



Fig. 2: Results from Problem 2.

Conclusions

The CYCLUS core has been shown to provide expected be-
havior of discrete material flows for simple reactor cases. CY-
CLUS additionally has the capability not only to model a va-
riety of growth scenarios with varying fuel storage strategies,
but also to emulate the reactor deployment algorithm of VI-
SION, i.e. explicitly declaring reactor types to be built given a
defined distribution, by adding an additional constraint in the
decision making problem solved by the region in which the
reactors exist.

Further work is currently underway to refine building strate-
gies for non-reactor facilities; however, the next major project
goal of the CYCLUS team is to provide recycle capability.
Once completed, additional benchmarks will be performed to
analyze code behavior using recycle scenarios.

ACKNOWLEDGMENTS

This research is being performed using funding received
from the DOE Office of Nuclear Energy’s Nuclear Energy Uni-
versity Programs. The author thanks the NEUP for its gener-
ous support.

REFERENCES

1. J. J. JACOBSON ET AL., VISION User Guide - VISION
(Verifiable Fuel Cycle Simulation) Model, Idaho National
Lab, inl/ext-09-16645 ed. (2009).

2. P. WILSON, M. GIDDEN, K. HUFF, and R. CARLSEN,
“Cyclus: A Nuclear Fuel Cycle Code from the
University of Wisconsin Madison,” (June 2012),
http://cyclus.github.com/.

3. M. GIDDEN, “Cyclopts: An Optimization Wrapper for Cy-
clus,” (June 2012), https://github.com/cyclus/cyclopts.

4. J. J. FORREST, “Coin-OR Branch and Cut v2.7,” (June
2012), https://projects.coin-or.org/Cbc.

5. C. JUCHAU, Development of the global evaluation of nu-
clear infrastructure and utilization scenarios (GENIUS)
nuclear fuel cycle systems analysis code, Master’s thesis,
Idaho State University (2008).

6. K. OLIVER, GENIUSV2: Software design and mathemat-
ical formulations for multi-region discrete nuclear fuel cy-
cle simulation and analysis, Master’s thesis, University of
Wisconsin - Madison (2009).

Transactions of the American Nuclear Society, Vol. 107, San Diego, California, November 11–15, 2012

266 Nuclear Fuel Cycle Resources, Sustainability, Reuse, and Recycle


