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Abstract – This study has identified flexible, general, and performant algorithms available for 

application to simulating demand-driven deployment of nuclear fuel cycle facility capacity in a 

fuel cycle simulator. Accordingly, a review of current Nuclear Fuel Cycle (NFC) simulation tools 

was conducted to determine their current capabilities for demand-driven and transition scenarios. 

Additionally, the authors investigated promising algorithmic innovations that have been successful 

for similar applications in other domains such as economics and industrial engineering Finally, 

the applicability of such algorithms in the context of challenging nuclear fuel cycle simulation 

questions has been described.  

 
 

I. INTRODUCTION 

 

Nuclear fuel cycle simulation scenarios may be 

described as constrained objective functions. The 

objectives are often systemic demands such as “achieve 

1% growth for total electricity production and reach 10% 

uranium utilization.” The constraints take the form of 

nuclear fuel cycle technology availability (“reprocessing 

begins after 2025 and fast reactors first become available 

in 2050”). To match the naturally constrained objective 

form of the scenario definition, NFC simulators must bring 

demand responsive deployment decisions into the 

dynamics of the simulation logic. 

In particular, a NFC simulator should have the 

capability to deploy supporting fuel cycle facilities which 

enable a demand to be met. Take, for instance, the standard 

once through fuel cycle. Reactors may be deployed to meet 

an objective power demand. However, new mines, mills, 

and enrichment facilities will also need to be deployed to 

ensure that reactors have sufficient fuel to produce power. 

In many simulators, the unrealistic solution to this problem 

is to simply have infinite capacity support facilities. 

Alternatively, detailing the deployment timeline of all 

facilities becomes the responsibility of the user. 
 

II. METHODS 

 

A meta-review of previous NFC gap analyses helped 

to identify the high level capabilities of existing simulators. 

Among these, [1], [2] and [3] compared the capabilities of 

international NFC simulators via systematic transition 

scenario benchmarks. In [4] and [5], the ability of 

individual simulators to conduct transition scenarios is 

addressed, however the flexibility and performance of their 

varying facility deployment algorithms were not. 

Primary references for an array of fuel cycle 

simulators were consulted to categorize facility 

deployment logic present in existing NFC simulators. 

Where the details of dynamic demand-driven simulation 

were unknown, this review individually investigated 

available tools. Fuel cycle simulators were categorized as 

having (1) no automated deployment at all, (2) deployment 

based on deterministic forecasting, or (3) an alternative 

method. The vast majority of existing simulators fall into 

the first two categories. The modeling limitations of both 

strategies will be discussed. Finally, this study will focus 

on alternative methods in existing simulators and 

promising potential methods which might be implemented 

in future simulators.  

We reviewed existing public literature regarding 15 

fuel cycle simulators to determine the extent to which 

those simulators (1) automatically deploy reactors to meet 

power demand and (2) automatically deploy supporting 

fuel cycle facilities to meet support demands. The fuel 

cycle simulation tools reviewed included: 

 

• CAFCA (MIT) [6] 
• CLASS (CNRS/IRSN) [7]  

• COSI (CEA) [8, 1] 

• Cyclus (UW) [9] 

• DANESS (ANL) [10] 

• DESAE (Rosatom) [1] 

• DYMOND (ANL) [1] 

• Evolcode (CIEMAT) [1] 

• FAMILY (IAEA) [1] 

• MARKAL (BNL) [11] 
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• NFCSim (LANL) [12] 

• NGSAM (ORNL) [13] 

• NUWASTE (NWTRB) [14]  

• ORION (NNL) [11] 

• VISION (INL) [11, 1] 

• VISTA (IAEA) [15] 

 

We found that automated deployment of supportive 

fuel cycle facilities is naïve or non-existent in most 

simulators, including Cyclus, the simulator under 

development by the authors. Additional details of this 

review and categorization will appear in the poster and 

upcoming full length article associated with this abstract. 

For the majority of simulators, automated deployment 

is limited to deploying reactors based on changes in power 

demand. For example, as the simulation progresses, 

additional reactors are deployed to meet a power demand 

projection (e.g. 2% growth over 100 years). However, 

supportive fuel cycle facilities must also be deployed in 

response to (or, more realistically, in preparation for) 

reactor deployment. Typically, current simulators rely on 

manual deployment of fuel cycle facilities. To reduce 

effort and the likelihood of a failed simulation, the user 

often deploys all potentially necessary fuel cycle facilities 

at the start of the simulation with excess or infinite 

throughput capacities. 

Current strategies can be categorized into four genres: 

 

• manual: The user ’guesses’ the future required fuel 

cycle facility deployments needed to support simulated 

reactors. 

• proportional: Deployment of fuel cycle facilities is in 

direct proportion with reactor deployments (e.g. for 

every 10 new fast reactors, deploy a new reprocessing 

plant). 

• constrained reactor deployment: Deployment of 

reactors is constrained by the existing and projected 

feedstock amounts. 

• predictive: The simulator projects the feedstock needs 

of current and future deployed reactors based on other 

heuristics and look-ahead predictors. 

 

The focus of this paper will be to improve on the 

current state of the art implementations of the fourth 

category above, predictive methods. 

 

III. PROMISING ALGORITHMS 

 

Various algorithms can be implemented in a NFC 

simulator to predict demand in future commodity markets. 

These can be divided into three major branches, Non-

optimizing, Deterministic Optimizing, and Stochastic 

Optimizing. These vary in applicability, complexity, 

compute time, and accuracy. Examples of each of the three 

categories are explained in detail below. 

 

III.A. Non-Optimizing (NO) 

Non-optimizing algorithms predict future deployment 

schedules based on historical supply-demand data from the 

simulator. These algorithms do not attempt to meet 

demand optimally, thus the name ‘non-optimizing’. The 

simple nature of this class of algorithms allows fast 

execution time, but only limited precision. The two non-

optimizing algorithms explored in this paper are 

autoregressive moving average (ARMA) and 

autoregressive conditional heteroskedastic (ARCH) 

methods. 

 

III.A.1 Autoregressive Moving Average (ARMA) 

ARMA is a combination of two models, the 

Autoregressive and the Moving Average model. The 

Autoregressive model predicts future values with a linear 

curve fit of the latest datasets, and the Moving Average 

method does so by fitting the errors [16]. 

The model is referred to as ARMA(p,q), where the p 

and q represent the order (number of previous time step 

values fitted) of the autoregressive, and the moving 

average parts, respectively. 

ARMA is applicable for ‘well behaved’ time series 

data, where there is little volatility. This makes ARMA a 

suitable candidate for demand prediction in the case of 

slowly changing power demand and corresponding reactor 

deployment. 

 

III.A.2. Autoregressive Conditional Heteroskedastic 

(ARCH) 

The ARCH model is similar to the ARMA model, 

except that it uses previous variance terms to calculate 

current error terms, instead of the value itself. This allows 

the model to be used in highly volatile time series (e.g. 

prediction of inflation or stock prices over time [17]). 

A comprehensive fuel cycle simulator must have 

predictive capabilities which can deploy fuel cycle support 

facilities intelligently even in the face of volatile dynamics. 

Such volatility may arise during transitions between 

technologies, from upsets related to unexpected facility 

shutdowns, due to the variability of an increasingly 

renewable electric grid, or other nonlinear economic 

drivers. In these cases, the ARCH model is more 

generically applicable and should therefore be preferred 

over the ARMA model. 

 

III.B. Deterministic-Optimizing (DO) 

Deterministic-Optimizing algorithms seek to minimize 

or maximize an objective function with respect to a set of 

constraints. Compared to stochastic optimizing algorithms, 

deterministic-optimizing algorithms require less computing 

power, and are replicable. The most widely used class of 

deterministic optimizing algorithm is the linear program 

(LP) model. Simply put, this model optimizes a linear 

objective function where the variables are constrained by 

multiple constraints. 
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Two major models that utilize deterministic-

optimizing algorithms are the Global Change Assessment 

Model (GCAM) and the MARKet and ALlocation 

(MARKAL) model. GCAM explores consequences to 

global change by representing various aspects of economy, 

energy and the environment [18]. MARKAL is a energy 

demand driven model that assesses the value of new 

energy technologies [19]. 

 

III.B.1. GCAM 

GCAM is a dynamic-recursive model that connects 

various social, economical, political decisions to climate 

change. It determines the price vector that satisfies all 

markets by utilizing the GCAM solver, which finds the 

root of ⃗y = F (p⃗), where F (p⃗) = 0. It does so by using 

two solver algorithms, the Bisection Method, and 

Broyden’s Method [20]. 

The Bisection Method has the advantage that it 

requires little computing time to ’get close’ to a solution. 

However, in a system of equations with multiple 

dimensions, it is sometimes not possible to even have 

rigorous bounds around a solution. Thus, in GCAM, the 

Bisection Method is used to get the solver only ’near’ the 

solution, then the solution is found using Broyden’s 

Method. 

Broyden’s Method is similar to Newton’s method, but 

it saves computing time by updating the Jacobian rather 

than computing it at every iteration. 

 

III.B.2. MARKAL 

MARKAL uses a general linear-programming 

algorithm to optimize multiple objective functions, namely 

cost, security and other environmental functions, given a 

collection of constraints. The variables and the functions 

are listed in detail in the reference [19] [21]. 

The optimization algorithm in MARKAL is a 

collection of objective functions, subject to a collection of 

constraints. Multi-objective linear programming is used in 

various applications, such as economics, finance, 

engineering design, and power systems [22]. It is used in 

cases where there are competing objectives that need an 

optimal decision. For example, a central bank may decide a 

monetary policy to optimize its objectives to lower 

inflation, unemployment, or interest rates. 

 

III.C. Stochastic-Optimizing (SO) 

 

Stochastic optimization refers to optimization methods 

that incorporate probablistic search into either the objective 

function or the constraints [23]. It aims to find the roots for 

the objective function by sweeping over random variables. 

Some  SO algorithms operate by directly modeling 

uncertainty, in addition to the mean. This capability is 

desirable for many  real world problems where 

uncertainties are known or should be computed.  

Mathematically, the method attempts to find properties of 

an objective f without evaluating f directly, but by using 

random samples of a model F(θ,ξ). The stochastic 

parameters driving the solution are typically sampled from 

probability distributions. 

The Markov Switching Model and the Gaussian 

Process Regression method are key examples of the 

Stochastic- Optimizing category of methods. 

 

III.C.1. Markov Switching Model 

The Markov Switching Model depends on the idea 

that the future is independent of the past and only 

dependent on the present. It utilizes Markov Chains, which 

characterize the probability of a system transitioning 

between states. 

The Markov Model is used in a wide variety of 

applications, such as predicting exchange rates [24], labor 

markets [25] and search trends [26]. 

 

III.C.2 Gaussian Process Regression 

Gaussian Process Regression distributes a function as 

a Gaussian Process characterized by a mean function and a 

covariance function [27]. The mean value denotes the most 

probable output, and the covariance is the measure of 

confidence. 

 

IV. SUCCESSFUL APPLICATIONS 

 

The concept of dynamic demand-driven deployment 

has been used in myriad domains, from lumber mills [28] 

to coupling building efficiency with weather [29, 30].   

To maximize fleet utilization and minimize operating 

costs, airlines predict future demands and optimize their 

flight schedules and aircraft types using In the airline 

industry, linear programming methods are used [31] 

including a linear optimization method called “Demand 

Driven Dispatch” [32], a type of deterministic optimization 

method. 

The success of these algorithms in other domains for 

similar classes of problems is promising for their potential 

in nuclear fuel cycle analysis. 

 

V. CONCLUSIONS 

 

The review concludes that fuel cycle simulation tools 

approach scenario objective functions in various ways. 

Some wrap realizations of the simulator in an external 

optimizer, while others employ look-ahead methods to 

predict malformed simulation inputs. These methods fail to 

realistically model the process by which utilities, 

governments, and other stakeholders actually make facility 

deployment decisions. 

Dynamic, demand-driven facility deployment may be 

enabled by algorithms in use in other fields. Deployment 

models were categorized into into three categories: non-

optimizing (NO), deterministic-optimizing (DO), and 

stochastic-optimizing (SO). Among these, characteristic 
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performance was addressed (in terms of both compute 

speed and human effort), flexibility (in terms of the range 

of scenarios capably simulated), and robustness (in terms 

of consistent fidelity of the modeling results). 

Finally, current NFC simulators may more flexibly 

support demand-driven deployment through incorporation 

of non-optimizing algorithms such as ARMA [33] and 

ARCH [34], deterministically optimizing methods such as 

those collected in GCAM [18] and MARKAL [19], or 

stochastic optimization techniques such as Markov 

Switching Models [35]. 
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