
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 87

PyRK: A Python Package For Nuclear Reactor
Kinetics

Kathryn Huff‡∗

https://www.youtube.com/watch?v=2HToG61wMWI

F

Abstract—In this work, a new python package, PyRK (Python for Reactor
Kinetics), is introduced. PyRK has been designed to simulate, in zero di-
mensions, the transient, coupled, thermal-hydraulics and neutronics of time-
dependent behavior in nuclear reactors. PyRK is intended for analysis of many
commonly studied transient scenarios including normal reactor startup and
shutdown as well as abnormal scenarios including Beyond Design Basis Events
(BDBEs) such as Accident Transients Without Scram (ATWS). For robustness,
this package employs various tools within the scientific python ecosystem.
For additional ease of use, it employs a reactor-agnostic, object-oriented data
model, allowing nuclear engineers to rapidly prototype nuclear reactor control
and safety systems in the context of their novel nuclear reactor designs.

Index Terms—engineering, nuclear reactor, package

Introduction

Time-dependent fluctuations in neutron population, fluid flow,
and heat transfer are essential to understanding the perfor-
mance and safety of a reactor. Such transients include normal
reactor startup and shutdown as well as abnormal scenarios
including Beyond Design Basis Events (BDBEs) such as Ac-
cident Transients Without Scram (ATWS). However, no open
source tool currently exists for reactor transient analysis. To
fill this gap, PyRK (Python for Reactor Kinetics) [Huff2015], a
new python package for nuclear reactor kinetics, was created.
PyRK is the first open source tool capable of:

• time-dependent,
• lumped parameter thermal-hydraulics,
• coupled with neutron kinetics,
• in 0-dimensions,
• for nuclear reactor analysis,
• of any reactor design,
• in an object-oriented context.
As background, this paper will introduce necessary con-

cepts for understanding the PyRK model and will describe
the differential equations representing the coupled physics at
hand. Next, the implementation of the data model, simulation
framework, and numerical solution will be described. This
discussion will include the use, in PyRK [Huff2015], of

* Corresponding author: katyhuff@gmail.com
‡ University of California, Berkeley

Copyright c○ 2015 Kathryn Huff. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

many parts of the scientific python software ecosystem such
as NumPy [vanderWalt2011] for array manipulation, SciPy
[Milman2011] for ODE and PDE solvers, nose [Pellerin2015]
for testing, Pint [Grecco2014] for unit-checking, Sphinx
[Brandl2009] for documentation, and Matplotlib [Hunter2007]
for plotting.

Background

Fundamentally, nuclear reactor transient analyses must char-
acterize the relationship between neutron population and tem-
perature. These two characteristics are coupled together by
reactivity, ρ , which characterizes the departure of the nuclear
reactor from criticality:

ρ =
k−1

k
(1)

where

ρ = reactivity (2)
k = neutron multiplication factor (3)

=
neutrons causing fission

neutrons produced by fission
. (4)

The reactor power is stable (critical) when the effective
multiplication factor, k, equals 1. For this reason, in all power
reactors, the scalar flux of neutrons determines the power.
The reactor power, in turn, affects the temperature. Reactivity
feedback then results due to the temperature dependence
of geometry, material densities, the neutron spectrum, and
reaction probabilities [Bell1970]. This concept is captured in
the feedback diagram in Figure 1.

One common method for approaching these transient sim-
ulations is a zero-dimensional approximation which results
in differential equations called the Point Reactor Kinetics
Equations (PRKE). PyRK provides a simulation interface that
drives the solution of these equations in a modular, reactor
design agnostic manner. In particular, PyRK provides an object
oriented data model for generically representing a nuclear
reactor system and provides the capability to exchange solution
methods from one simulation to another.

The Point Reactor Kinetics Equations can only be under-
stood in the context of neutronics, thermal-hydraulics, reactiv-
ity, delayed neutrons, and reactor control.

https://www.youtube.com/watch?v=2HToG61wMWI
mailto:katyhuff@gmail.com

88 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: Reactivity feedback couples neutron kinetics and thermal
hydraulics

Neutronics

The heat produced in a nuclear reactor is due to nuclear
fission reactions. In a fission reaction, a neutron collides
inelastically with a ’fissionable’ isotope, which subsequently
splits. This reaction emits both heat and neutrons. When the
emitted neutrons go on to collide with another isotope, this
is called a nuclear chain reaction and is the basis of power
production in a nuclear reactor. The study of the population,
speed, direction, and energy spectrum of neutrons in a reactor
as well as the related rate of fission at a particular moment is
called neutronics or neutron transport. Neutronics simulations
characterize the production and destruction of neutrons in
a reactor and depend on many reactor material properties
and component geometries (e.g., atomic densities and design
configurations).

Thermal-Hydraulics

Reactor thermal hydraulics describes the mechanics of flow
and heat in fluids present in the reactor core. As fluids are
heated or cooled in a reactor core (e.g. due to changes in fission
power) pressure, density, flow, and other parameters of the
system respond accordingly. The fluid of interest in a nuclear
reactor is typically the coolant. The hydraulic properties of
this fluid depend primarily on its intrinsic properties and the
characteristics of the cooling system. Thermal hydraulics is
also concerned with the heat transfer between the various com-
ponents of the reactor (e.g., heat generation in the reactor fuel
heat removal by the coolant). Heat transfer behavior depends
on everything from the moderator density and temperature to
the neutron-driven power production in the fuel.

Reactivity

The two physics (neutronics and thermal-hydraulics) are cou-
pled by the notion of reactivity, which is related to the
probability of fission. The temperature and density of materials
can increase or decrease this probability. Fission probability
directly impacts the neutron production and destruction rates
and therefore, the reactor power. The simplest form of the
equations dictating this feedback are:

ρ(t) = ρ0 +ρ f (t)+ρext

where

ρ(t) = total reactivity
ρ f (t) = reactivity from feedback

ρext(t) = external reactivity insertion

and where

ρ f (t) = ∑
i

αi
δTi

δ t

Ti = temperature of component i
αi = temperature reactivity coefficient of i.

The PRKE

The Point Reactor Kinetics Equations (PRKE) are the set
of equations that capture neutronics and thermal hydraulics
when the time-dependent variation of the neutron flux shape
is neglected. That is, neutron population is captured as a
scalar magnitude (a point) rather than a geometric distribution.
In the PRKE, neutronics and thermal hydraulics are coupled
primarily by reactivity, but have very different characteristic
time scales, so the equations are quite stiff.

d
dt

p
ζ1

.

.

.

ζ j

.

.

.

ζJ

ω1

.

.

.

ωk

.

.

.

ωK

Ti

.

.

.

TI

=

ρ(t,Ti,···)−β

Λ
p+

j=J

∑
j=1

λd, jζ j

β1
Λ

p−λd,1ζ1

.

.

.
β j
Λ

p−λd, jζ j

.

.

.
βJ
Λ

p−λd,JζJ

κ1 p−λFP,1ω1

.

.

.

κk p−λFP,kωk

.

.

.

κkp −λFP,kωk

fi(p,Cp,i,Ti, · · ·)
.

.

.

fI(p,Cp,I ,TI , · · ·)

(5)

PYRK: A PYTHON PACKAGE FOR NUCLEAR REACTOR KINETICS 89

In the above matrix equation, the following variable definitions
are used:

p = reactor power (6)
ρ(t,Tf uel ,Tcool ,Tmod ,Tre f l) = reactivity (7)

β = fraction of neutrons that are delayed (8)
β j = fraction of delayed neutrons from precursor group j

(9)
ζ j = concentration of precursors of group j (10)

λd, j = decay constant of precursor group j (11)
Λ = mean generation time (12)

ωk = decay heat from FP group k (13)
κk = heat per fission for decay FP group k (14)

λFP,k = decay constant for decay FP group k (15)
Ti = temperature of component i (16)

The PRKE in equation 5 can be solved in numerous ways,
using either loose or tight coupling. Operator splitting, loosely
coupled in time, is a stable technique that neglects higher order
nonlinear terms in exchange for solution stability. Under this
approach, the system can be split clearly into a neutronics sub-
block and a thermal-hydraulics sub-block which can be solved
independently at each time step, combined, and solved again
for the next time step.

Un =

[
Nn

T n

]
(17)

Nn+1 = Nn + k f (Un) (18)

U∗ =

[
Nn+1

T n

]
(19)

T n+1 = T n + k f (U∗) (20)

PyRK Implementation

Now that the premise of the problem is clear, the implemen-
tation of the package can be discussed. Fundamentally, PyRK
is object oriented and modular. The important object classes
in PyRK are:

• SimInfo: Reads the input file, manages the solution ma-
trix, Timer, and communication between neutronics and
thermal hydraulics.

• Neutronics : Calculates dP
dt , dζ j

dt , and dω j
dt , based on dTi

dt
and the external reactivity insertion.

• THSystem : Manages various THComponents and facil-
itates their communication during the lumped parameter
heat transfer calculation.

• THComponent : Represents a single thermal volume,
made of a single material, (usually a volume like "fuel"
or "coolant" or "reflector" with thermal or reactivity
feedback behavior distinct from other components in the
system.

• Material : A class for defining the intensive properties
of a material (cp, ρ , kth). Currently, subclasses include
FLiBe, Graphite, Sodium, SFRMetal, and Kernel.

A reactor is made of objects, so an object-oriented data
model provides the most intuitive user experience for describ-
ing a reactor system, its materials, thermal bodies, neutron
populations, and their attributes. In PyRK, the system, com-
prised by those objects is built up by the user in the input
file in an intuitive fashion. Each of the classes that enable
this object oriented model will be discussed in detail in this
section.

SimInfo

PyRK has implemented a casual context manager pattern by
encapsulating simulation information in a SimInfo object. This
class keeps track of the neutronics system and its data, the
thermal hydraulics system (THSystem) and its components
(THComponents), as well as timing and other simulation-wide
parameters.

In particular, the SimInfo object is responsible for capturing
the information conveyed in the input file. The input file
is a python file holding parameters specific to the reactor
design and transient scenario. However, a more robust solution
is anticipated for future versions of the code, relying on a
json input file rather than python, for more robust validation
options.

The current output is a plain text log of the input, runtime
messages, and the solution matrix. The driver automatically
generates a number of plots. However, a more robust solution
is anticipated for v0.2, relying on an output database backend
in hdf5, via the pytables package.

Neutronics

The neutronics object holds the first 1+j+k equations in the
right hand side of the matrix equation in 5. In particular,
it takes ownership of the vector of 1 + j + k independent
variables and their solution. It also customizes the equations
based on paramters noted in the user input file. The parameters
customizing these equations for a particular reactor include αi
for each component, j, Λ, k, and the fissionable nuclide.

The Neutronics class has three attributes that are sufficiently
complex as to warrant their own classes: PrecursorData, De-
cayHeat, and ReactivityInsertion.

A Neutronics object can own one PrecursorData object. In
this class, the input parameters J and the fissionable nuclide
are used to select, from a database supplied by PyRK, stan-
dardized data representing delayed neutron precursor concen-
trations and the effective decay constants of those precursors
(λd, j,β j,ζ j. That nuclear data is stored in the PrecursorData
class, and is made available to the Neutronics class through a
simple API.

A Neutronics object can also own one DecayHeat object. In
this class, the input parameters K, and the fissionable nuclide
are used to select, the fission product decay data (λFP,k,ωk,κk.
The DecayHeat class provides a simple API for accessing
those decay constants, fission product fractions, and weighting
factors.

Finally, a Neutronics object can own one ReactivityInsertion
object. This defines the external reactivity, rhoext, resulting
from control rods, external neutron sources, etc. With this
ReactivityInsertion object, the Neutronics class is equipped to

90 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: The reactivity insertion that can drive the PyRK simulator
can be selected and customized from three models.

Mode Heat Transfer Rate Thermal Resistance
Conduction Q̇ = T1−T2

(L
kA)

L
kA

Convection Q̇ =
Tsur f −Tenvr(

1
hconvAsur f

) 1
hconvAsur f

Radiation Q̇ =
Tsur f −Tsurr(

1
hrAsur f

) 1
hrA

hr = εσ(T 2
sur f +T 2

surr)(Tsur f +Tsurr)

drive a reactivity insertion accident scenario. That is, an acci-
dent scenario can be driven by an insertion of reactivity (e.g.
the removal of a control rod). In PyRK, this reactivity insertion
capability is captured in the ReactivityInsertion class, from
which reactivity insertions can be selected and customized as
in Figure 2.

THSystem

A reactor is made up of many material structures which, in
addition to their neutronic response, vary in their temperature
response. These structures may include fuel, cladding, coolant,
reflectors, or other components. In PyRK, a heat transfer
model of the changing temperatures and material properties
of those components has been implemented as a lumped
capacitance model. This model approximates heat transfer into
discrete components, approximating the effects of geometry
for "lumps" of material.

In this model, heat transfer through a system of components
is modeled analogously to current through a resistive circuit.
Table 1 describes the various canonical forms of lumped
capacitance heat transfer modes.

Based on the modes in Table 1, we can formulate a model
for component temperatures specific to to the geometry of
a particular reactor design. This might include fuel pellets,
particles, or pebbles, cladding, coolant, reflectors or other
structures in the design.

Fundamentally, to determine the temperature change in a
thermal body of the reactor, we rely on relations between
temperature, heat capacity, and thermal resistance. As in Table
1, the heat flow out of body i is the sum of surface heat flow
by conduction, convection, radiation, and other mechanisms

TABLE 1: Lumped Capacitance for various heat transfer modes
[Lienhard2011]

to each adjacent body, j [Lienhard2011]:

Q = Qi +∑
j

Qi j

= Qi +∑
j

Ti −Tj

Rth,i j

where

Q̇ = total heat flow out of body i [J · s−1]

Qi = other heat transfer, a constant [J · s−1]

Ti = temperature of body i [K]

Tj = temperature of body j [K]

j = adjacent bodies [−]

Rth = thermal resistence of the component [K · s · J−1].

Note also that the thermal energy storage and release in the
body is accordingly related to the heat flow via capacitance:

dTi

dt
=

−Q+ Ṡi

Ci

where

C = heat capacity of the object [J ·K−1]

= (ρcpV)i

Ṡi = source term, thermal energy conversion [J · s−1]

Together, these form the equation:

dTi

dt
=

−
[
Qi +∑ j

Ti−Tj
Rth,i j

]
+ Ṡi

(ρcpV)i

THComponent

The THSystem class is made up of THComponent objects,
linked together at runtime by heat transfer interfaces selected
by the user in the input file:
fuel = th.THComponent(name="fuel",

mat=Kernel(name="fuelkernel"),
vol=vol_fuel,
T0=t_fuel,
alpha_temp=alpha_f,
timer=ti,
heatgen=True,
power_tot=power_tot)

cool = th.THComponent(name="cool",
mat=Flibe(name="flibe"),
vol=vol_cool,
T0=t_cool,
alpha_temp=alpha_c,
timer=ti)

clad = th.THComponent(name="clad",
mat=Zirconium(name="zirc"),
vol=vol_clad,
T0=t_clad,
alpha_temp=alpha_clad,
timer=ti)

components = [fuel, clad, cool]

The fuel conducts to the cladding
fuel.add_conduction(’clad’, area=a_fuel)
clad.add_conduction(’fuel’, area=a_fuel)

PYRK: A PYTHON PACKAGE FOR NUCLEAR REACTOR KINETICS 91

The clad convects to the coolant
clad.add_convection(’cool’, h=h_clad, area=a_clad)
cool.add_convection(’clad’, h=h_clad, area=a_clad)

In the above example, the mat argument must include a
Material object.

Material

The PyRK Material class allows for materials of any kind to
be defined within the system. This class represents a generic
material and daughter classes inheriting from the Material
class describe specific types of material (water, graphite,
uranium oxide, etc.). The attributes of a material object are
intrinsic material properties (such as thermal conductivity, kth)
as well as material-specific behaviors.

Given these object classes, the burden of the user is then
confined to:

• defining the simulation information (such as duration or
preferred solver)

• defining the neutronic parameters associated with each
thermal component

• defining the materials of each component
• identifying the thermal components
• and connecting those components together by their dom-

inant heat transfer mode.

Quality Assurance

For robustness, a number of tools were used to improve
robustness and reproducibility in this package. These include:

• GitHub : for version control hosting [GitHub2015]
• Matplotlib : for plotting [Hunter2007]
• Nose : for unit testing [Pellerin2015]
• NumPy : for holding and manipulating arrays of floats

[vanderWalt2011]
• Pint : for dimensional analysis and unit conversions

[Grecco2014]
• SciPy : for ode solvers [Oliphant2007], [Milman2011]
• Sphinx : for automated documentation [Brandl2009]
• Travis-CI : for continuous integration [Travis2015]
Together, these tools create a functional framework for

distribution and reuse.

Unit Validation

Of particular note, the Pint package[Grecco2014]_ is used for
keeping track of units, converting between them, and throwing
errors when unit conversions are not sane. For example, in the
code below, the user is able to initialize the material object
with kth and cp in any valid unit for those quantities. Upon
initialization of those member variables, the input values are
converted to SI using Pint.
def __init__(self, name=None,

k=0*units.watt/units.meter/units.kelvin,
cp=0*units.joule/units.kg/units.kelvin,
dm=DensityModel()):

"""Initalizes a material

:param name: The name of the component
:type name: str.
:param k: thermal conductivity, :math:‘k_{th}‘

:type k: float, pint.unit.Quantity
:param cp: specific heat capacity, :math:‘c_p‘
:type cp: float, pint.unit.Quantity
:param dm: The density of the material
:type dm: DensityModel object
"""
self.name = name
self.k = k.to(’watt/meter/kelvin’)
validation.validate_ge("k", k,

0*units.watt/units.meter/units.kelvin)
self.cp = cp.to(’joule/kg/kelvin’)
validation.validate_ge("cp", cp,

0*units.joule/units.kg/units.kelvin)
self.dm = dm

The above code employs a validation utility written for PyRK
and used throughout the code to confirm (at runtime) types,
units, and valid ranges for parameters of questionable validity.
Those validators are simple, but versatile, and in combination
with the Pint package, provide a robust environment for
users to experiment with parameters in the safe confines of
dimensional accuracy.

Minimal Example : SFR Reactivity Insertion

To demonstrate the use of this simulation framework, we
give a minimal example. This example approximates a 1-
second impulse-reactivity insertion in a sodium cooled fast
reactor. This type of simulation is common, as it represents
the instantaneous removal and reinsertion of a control rod.
The change in reactivity results in a slightly delayed change in
power and corresponding increases in temperatures throughout
the system. For simplicity, the heat exchanger outside of the
reactor core is assumed to be perfectly efficient and the inlet
coolant temperature is accordingly held constant throughout
the transient.

Minimal Example: Input Parameters

The parameters used to configure the simulation were retrieved
from ?? and ??. The detailed input is listed in the full input
file with illuminating comments as follows:
import math
from ur import units
import th_component as th
from timer import Timer
from sfrmetal import SFRMetal
from sodium import Sodium

###
#
User Workspace
#
###

Timing: t0=initial, dt=step, tf=final
t0 = 0.00*units.seconds
dt = 0.005*units.seconds
tf = 5.0*units.seconds

Temperature feedbacks of reactivity (Ragusa2009)
Fuel: Note Doppler model not implemented
alpha_f = (-0.8841*units.pcm/units.kelvin)
Coolant
alpha_c = (0.1263*units.pcm/units.kelvin)

Initial Temperatures
t_fuel = 737.033*units.kelvin
t_cool = 721.105*units.kelvin
t_inlet = units.Quantity(400.0, units.degC)

92 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

t_inlet.ito(units.kelvin)

Neglect decay heating
kappa = 0.00

Geometry
fuel pin radius
r_fuel = 0.00348*units.meter
active core height
h_core = 0.8*units.meter
surface area of fuel pin
a_fuel = 2*math.pi*r_fuel*h_core
volume of a fuel pin
vol_fuel = math.pi*pow(r_fuel, 2)*h_core
hydraulic area per fuel pin
a_flow = 5.281e-5*pow(units.meter, 2)
volume of coolant per pin
vol_cool = a_flow*h_core
velocity of coolant
v_cool = 5.0*units.meter/units.second

constant heat transfer approximation
h_cool = 1.0e5*(units.watt/

units.kelvin/
pow(units.meter, 2))

power density
omega = 4.77E8*units.watt/pow(units.meter, 3)
total power, watts, thermal, per 1 fuel pin
power_tot = omega*vol_fuel

###
#
Required Input
#
###

maximum number of ode solver internal steps
nsteps = 1000

Timer instance, based on t0, tf, dt
ti = Timer(t0=t0, tf=tf, dt=dt)

Number of precursor groups
n_pg = 6

Number of decay heat groups
n_dg = 0

Fissioning Isotope
fission_iso = "sfr"

Spectrum
spectrum = "fast"

False to turn reactivity feedback off.
feedback = True

External Reactivity
from reactivity_insertion \

import ImpulseReactivityInsertion as pulse
rho_ext = pulse(timer=ti,

t_start=1.0*units.seconds,
t_end=2.0*units.seconds,
rho_init=0.0*units.delta_k,
rho_max=0.05*units.delta_k)

fuel = th.THComponent(name="fuel",
mat=SFRMetal(name="sfrfuel"),
vol=vol_fuel,
T0=t_fuel,
alpha_temp=alpha_f,
timer=ti,
heatgen=True,
power_tot=power_tot)

cool = th.THComponent(name="cool",

mat=Sodium(name="sodiumcoolant"),
vol=vol_cool,
T0=t_cool,
alpha_temp=alpha_c,
timer=ti)

inlet = th.THComponent(name="inlet",
mat=Sodium(name="sodiumcoolant"),
vol=vol_cool,
T0=t_inlet,
alpha_temp=0.0*units.pcm/units.K,
timer=ti)

The clad convects with the coolant
fuel.add_convection(’cool’, h=h_cool, area=a_fuel)
cool.add_convection(’fuel’, h=h_cool, area=a_fuel)

The coolant flows
cool.add_mass_trans(’inlet’, H=h_core, u=v_cool)

components = [fuel, cool, inlet]

Minimal Example Results

The results of this simulation are a set of plots, the creation
and labelling of which are enabled by matplotlib. In the first
of these plots, the transient, beginning at time t = 1s, is driven
by a step reactivity insertion of 0.5 "dollars" of reactivity as
in Figure 3.

Fig. 3: A prompt reactivity insertion, with a duration of 1 second
and a magnitude of 0.05δk/k drives the simulation. It represents the
prompt partial removal and reinsertion of a control rod.

The power responsds accordingly as in Figure 4.
Finally, the temperatures in the key components of the

system follow the trends in Figure 5.
These are typical of the kinds of results nuclear engineers

seek from this kind of analysis and can be quickly re-
parameterized in the process of prototyping nuclear reactor
designs. This particular simulation is not sufficiently detailed
to represent a benchmark, as the effect of the cladding on
heat transfer is neglected, as is the Doppler model controlling
fuel temperature feedback. However, it presents a sufficiently
interesting case to demonstrate the use of the PyRK tool.

PYRK: A PYTHON PACKAGE FOR NUCLEAR REACTOR KINETICS 93

Fig. 4: The power in the reactor closely follows the reactivity
insertion, but is magnified as expected.

Fig. 5: While the inlet temperature remains constant as a boundary
condition, the temperatures of fuel and coolant respond to the
reactivity insertion event.

Conclusions and Future Work

The PyRK library provides a modular simulation environment
for a common and essential calculation in nuclear engineering.
PyRK is the first freely distributed tool for neutron kinetics.
By supplying and API for ANSI standard precursor data, a
modular material definition framework, and coupled lumped
parameter thermal hydraulics with zero-dimensional neutron
kinetics in an object-oriented modeling paradigm, PyRK pro-
vides design-agnostic toolkit for accident analysis potentially
useful to all nuclear reactor designers and analysts.

Acknowledgements

The author would like to thank the contributions of col-
laborators Xin Wang, Per Peterson, Ehud Greenspan, and
Massimiliano Fratoni at the University of California Berkeley.

This research was performed using funding received from
the U.S. Department of Energy Office of Nuclear Energy’s
Nuclear Energy University Programs through the FHR IRP.
Additionally, this material is based upon work supported by
the Department of Energy National Nuclear Security Admin-
istration under Award Number: DE-NA0000979 through the
Nuclear Science and Security Consortium.

REFERENCES

[Andreades2014] C. Andreades, A. T. Cisneros, J. K. Choi, A. Y. .
Chong, D. L. Krumwiede, L. Huddar, K. D. Huff,
M. D. Laufer, M. Munk, R. O. Scarlat, J. E. Seifried,
N. Zwiebaum, E. Greenspan, and P. F. Peterson,
"Technical Description of the ’Mark 1’ Pebble-
Bed, Fluoride-Salt-Cooled, High-Temperature Reac-
tor Power Plant," University of California, Berkeley,
Department of Nuclear Engineering, Berkeley, CA,
Thermal Hydraulics Group UCBTH-14-002, Sep.
2014.

[Bell1970] G. I. Bell and S. Glasstone, Nuclear Reactor
Theory. New York: Van Nostrand Reinhold
Company, 1970.

[Brandl2009] G. Brandl, Sphinx: Python Documentation Generator.
URL: http://sphinx. pocoo. org/index. html (13.8.
2012), 2009.

[GitHub2015] GitHub, "GitHub: Build software better, together," GitHub,
2015. [Online]. Available: https://github.com. [Accessed:
17-Jun-2015].

[Grecco2014] H. E. Grecco, Pint: a Python Units Library.
https://github.com/hgrecco/pint. 2014.

[Huff2015] K. Huff, PyRK: Python for Reactor Kinetics. https://
pyrk.github.io. 2015.

[Hunter2007] J. D. Hunter, "Matplotlib: A 2D Graphics Envi-
ronment," Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 90–95, 2007.

[Lienhard2011] Lienhard V and J. H. Lienhard IV, A Heat Transfer
Textbook: Fourth Edition, Fourth Edition edition. Mineola,
N.Y: Dover Publications, 2011.

[Milman2011] K. J. Millman and M. Aivazis, "Python for
Scientists and Engineers," Computing in
Science & Engineering, vol. 13, no. 2, pp.
9–12, Mar. 2011.

[Oliphant2007] T. E. Oliphant, "Python for Scientific Comput-
ing," Computing in Science & Engineering,
vol. 9, no. 3, pp. 10–20, 2007.

[Pellerin2015] J. Pellerin, nose. https://pypi.python.org/pypi/nose/1.3.
7. 2015.

[Ragusa2009] J. C. Ragusa and V. S. Mahadevan, "Consistent
and accurate schemes for coupled neu-
tronics thermal-hydraulics reactor analy-
sis," Nuclear Engineering and Design, vol.
239, no. 3, pp. 566–579, Mar. 2009.

[Sofu2011] T. Sofu, "A review of inherent safety characteris-
tics of metal alloy sodium-cooled fast reactor fuel
against postulated accidents," Nuclear Engineering
and Technology, vol. 47, no. 3, pp. 227–239, Apr.
2015.

[Travis2015] Travis, “travis-ci/travis-api,” GitHub repository. Avail-
able: https://github.com/travis-ci/travis-api. Accessed: 04-
Jul-2015.

[vanderWalt2011] S. van der Walt, S. C. Colbert, and G. Varoquaux, "The
NumPy Array: A Structure for Efficient Numerical
Computation," Computing in Science & Engineer-
ing, vol. 13, no. 2, pp. 22–30, Mar. 2011.

http://sphinx
https://github.com
https://github.com/hgrecco/pint
https://pyrk.github.io
https://pyrk.github.io
https://pypi.python.org/pypi/nose/1.3.7
https://pypi.python.org/pypi/nose/1.3.7
https://github.com/travis-ci/travis-api

	Introduction
	Background
	Neutronics
	Thermal-Hydraulics
	Reactivity
	The PRKE

	PyRK Implementation
	SimInfo
	Neutronics
	THSystem
	THComponent
	Material

	Quality Assurance
	Unit Validation

	Minimal Example : SFR Reactivity Insertion
	Minimal Example: Input Parameters
	Minimal Example Results

	Conclusions and Future Work
	Acknowledgements
	References

