
Rapid Peer Education of a Computational Nuclear Engineering Skill Suite

Kathryn D. Huff, Anthony M. Scopatz, Nicholas D. Preston, Paul P.H. Wilson

1500 Engineering Drive, University of Wisconsin, Madison, WI, 53706
khuff@cae.wisc.edu

INTRODUCTION

Detailed reactor models, massively parallelized calculations,

and enormously collaborative simulation projects are increas-

ingly integral to nuclear engineering. However, the quality and

caliber of this work is limited by a workforce lacking formal

training in a software development skill suite that is becom-

ing increasingly essential. To address this unmet need, The

Hacker Within (THW), a student organization at the University

of Wisconsin, has developed a series of short courses address-

ing best practices such as version control and test driven code

development, as well as basic skills such as UNIX mobility.

These ‘Boot Camps’ seek to provide time efficient introduc-

tions to essential programming languages and tools without

turning “biochemists and mechanical engineers into computer

scientists.”[1][2]

MOTIVATION

If sophisticated computational efforts in nuclear engineering

are to succeed, the workforce must be versed in code devel-

opment methods. While the straightforward coding projects

of the past were handily written by self-taught scientists, the

body of knowledge necessary to competantly produce state-

of-the-art software today is no longer within the wheelhouse

of the scientist.[3] Worse, the fundamental tenants of scientic

endeavor (such as data control, reproduciblity, comprehensive

documentation, and peer review) suffer in projects that fail to

make use of current development tools such as unit testing,

version control, automated documentation and others.

Analgous to experimental instrument testing and calibration,

industry standard software testing methods which systemati-

cally verify the accuracy of each unit of code will be prerequi-

site to the success of ambitious projects underway in nuclear

engineering today. Soberingly however, a recent review in-

dicates that fewer than 47% percent of scientists conducting

computational research reported a good understanding of soft-

ware testing.[4] Another practice that will be essential to enor-

mously collaborative efforts is the use of version control. Ver-

sion control tools which monitor file changes during develop-

ment enable the reproduction of output from any previous code

revision. This tool in particular will empower nuclear engi-

neers to confidently release their code and review the code of

their collaborators; however, it is sorely underused in scientific

computation today.[5][4]

CURRICULUM DEVELOPMENT

Four Hacker Within Boot Camps have emphasized an open,

time efficient, exercise driven curriculum model. Content was

contributed by THW student members who led interactive

lessons during the multi-day Boot Camps. Curriculum devel-

opment took place collaboratively on a public wiki such that a

single lesson was often the collective work of many contribu-

tors. Lecture videos, notes, and example exercises were freely

available online.[2] Feedback taken at each of the Boot Camps

led to focused adjustments of the format where necessary (see

Fig. 1).

Topic Year Days hr
day Attendees

Unix 2009 4 2 18

C++ 2009 4 2 30

Python 2010 3 4 82

Software Carpentry 2011 3 4 79

TABLE 1: Previous Bootcamps have been conducted in two

condensed formats. Feedback surveys from early bootcamps

led to a three rather than four day structure.

While course content was primarily driven by what the grad-

uate students leading the course found useful in their own

work, content in first Boot Camp on UNIX mobility and the

most recent on Software Carpentry were influenced by an

open curriculum Software Carpentry course by Greg Wilson

of Toronto.[1] This content included lessons on the shell envi-

ronment, version control, text editors, debugging, testing, au-

tomated documentation, databases, and web programming.

OBSERVATIONS

Registration, feedback, and website statistics have informed

observations and recommendations concerning the target audi-

ence, the appropriate level of instruction, and specific content

for which an unmet need exists. Registration statistics for the

Python and Software Carpentry bootcamps indicated an audi-

ence dominated by technical graduate students with intermedi-

ate programming skills. However, an appreciable number of

undergraduates, professors, staff and members of the public

also attended (Fig. 1) and the students spanned many levels of

computational backgrounds (Fig. 2).

Skill variation of the audience presents a challenge to cur-

riculum design. The THW model has sought to answer this

by emphasizing basic skills in early lessons and presenting in-

creasingly advanced tools in later lessons with decreasing lev-

els of detail. Similarly, the diversity of disciplines demands

that examples and explanations be presented as free of jargon

Transactions of the American Nuclear Society, Vol. 104, Hollywood, Florida, June 26–30, 2011

103Training, Human Performance, and Work Force Development



Fig. 1: Registration and attendance was diverse, but dominated

by graduate students.

as possible. Though these solutions potentially sacrifice detail

for clarity, expediency and accessibility are well served by this

model.

Fig. 2: Self reported programming experience demanded a cur-

riculum that appealed to varied skillsets.

Finally, feedback indicated that some course content sug-

gested greater future potential than other content. Specifically,

students self reported the likelihood that in the future they will

use various topics covered in the four bootcamps. Favorite

topics included the shell, object orientation, and text editors

as well as scientific, numerical, and statistical python libraries,

automated documentation, version control, and build systems.

RECOMMENDATIONS

Based on the successes of the THW boocamp model for

both student attendtees and teachers, the authors strongly rec-

ommend that similar peer-education groups be implemented at

other institutions. Evidence for the breadth of impact of these

bootcamps has been demonstrated above. Additionally, anec-

dotal knowledge indicates that all students involved become

more effective and productive when they return to nuclear en-

gineering. In addition to further bootcamps, future work will

attempt to develop metrics by which the productivity increases

may be measured.

ACKNOWLEDGEMENTS

This work is the result of the unparalleled dedication and

enthusiasm of these authors as well as fellow founders Milad

Fatenejad, Kyle Oliver, and Matthew Terry. Other notewor-

thy contributors to these efforts include Matthew McCormick,

Rachel Slaybaugh, Matthew J. Gidden, Aronne Merrelli, Kurt

Smith, Jim Porter and Greg Wilson. Finally, our activities have

been sponsored by the Associated Students of Madison, the

Wisconsin Experience Grant, and generous benefaction from

the office of the CIO of the University of Wisconsin.

REFERENCES

1. G. WILSON, “Software Carpentry: Essential Software

Skills for Research Scientists,” (2006).

2. “the.hacker.within,” http://hackerwithin.org/ (2010).

3. Z. MERALI, “Computational science: ...Error,” Nature,

467, 7317, 775–777 (2010).

4. J. E. HANNAY, C. MACLEOD, J. SINGER, H. P. LANG-

TANGEN, D. PFAHL, and G. WILSON, “How do scien-

tists develop and use scientific software?” in “Proceedings

of the 2009 ICSE Workshop on Software Engineering for

Computational Science and Engineering,” (2009), pp. 1–8.

5. G. V. WILSON, “Where’s the real bottleneck in scientific

computing?” American Scientist (2010).

Transactions of the American Nuclear Society, Vol. 104, Hollywood, Florida, June 26–30, 2011

104 Training, Human Performance, and Work Force Development


