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A B S T R A C T

Pattern recognition algorithms such as artificial neural networks (NNs) and convolution neural networks (CNNs)
are prime candidates to perform automated gamma-ray spectroscopy. The way these models train and operate
mimic how trained spectroscopists identify spectra. These models have shown promise in identifying gamma-ray
spectra with large calibration drift and unknown background radiation fields. In this work, two algorithms for
mixtures of radioisotopes based on NN and CNN are presented and evaluated.
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1. Introduction

Traditionally, isotope identification is conducted by a trained spec-
troscopist. Rawool-Sullivan et al. identified a common workflow per-
formed by a group of gamma-ray spectroscopists [1]. This workflow
included discriminating background and source photopeaks, adjusting
the calibration using background photopeaks and checking for shielding
effects in the low-energy photopeaks. Once photopeaks are identified,
the spectroscopist would use their prior knowledge of isotope emissions
(or consult a database of these emissions) to match isotopes to the
spectrum. The researchers also noted that while spectroscopists used
this book knowledge, they often would use intuition developed from
analyzing tens or hundreds of gamma-ray spectra. The researchers also
noted the difficulty in incorporating this subjective analysis into an
automated algorithm.

∗ Corresponding author.
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Neural networks (NNs) can mimic the intuition a trained spectro-
scopist uses when identifying spectra. It has been previously shown
that NNs can be trained to identify and quantify isotopes in gamma-
ray spectra [2]. There have also been a number of published papers
which apply NNs to automated isotope identification. NNs have been
applied to peak fitting [3], isotope identification [4,5], and activity
estimation [4,6,7].

Previous work applying NNs to spectroscopy have focused on fully-
connected architectures. Fully-connected NNs do not assume the input
channels have local spatial structure, while convolutional neural net-
works (CNN) do. Because gamma-ray spectra have local spatial structure
in the form of photopeaks and Compton continua, it may be better to
use a convolutional NN over a fully connected NN. This work will focus
on comparing the performance of a fully-connected NN and a CNN for
automated gamma-ray spectroscopy.
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Fig. 1. Example ANN with input layer A, hidden layer B, and output layer C.

Fig. 2. Summary of the operation of a single neuron.

2. Artificial neural networks

An NN is a mathematical model that attempts to map an arbitrary
function from R𝑀 to R𝑁 , where 𝑀 and 𝑁 are any integers. An NN
accomplishes this by mimicking biological neurons. An example of an
ANN is shown in Fig. 1. This network has N neurons in input layer A,
J neurons in hidden layer B, and K neurons in output layer C. Neurons
in adjacent layers are connected by weights, represented in Fig. 1 by
arrows connecting nodes.

The operation of a neuron is summarized in Fig. 2. Each neu-
ron operates by summing the products of the previous layers values
(A1, A2,. . . ,AN) and each individual weight (w1j, w2j,. . . ,wnj) connecting
nodes. This summation is then operated on by an activation function,
typically rectified linear unit (ReLU), which is passed onto the next layer
of the network.

An ANN may be trained by setting the network weights, 𝐖, connect-
ing the neurons in such a way that they minimize some error metric, E,
between target values, 𝐓, in a training dataset, 𝐘, and the ANN output
given that training dataset, 𝑓 (𝐘;𝐖),

argmin
𝐖

E(𝑓 (𝐘;𝐖),𝐓). (1)

A popular numerical method to solving Eq. (1) is gradient descent
through the back-propagation of errors [8]. This method changes the
ANN weights using the derivative of the error function with respect to
the weights.

The complete FC-NN model used in this work is shown in Fig. 3. The
FC-NN uses 1024 channels of a 2" × 2" NaI spectrum as input, and has
a softmax output,

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑗 ) =
exp(𝑧𝑗 )

∑𝐾
𝑘=1 exp(𝑧𝑘)

, (2)

Fig. 3. Illustration of Fully Connected Neural Network Structure (the input spectrum
contains 60Co).

Fig. 4. Illustration of Convolutional Neural Network Structure (the input spectrum
contains 60Co).

after three fully connected layers. The softmax output normalizes the
output vector to sum to unity and guarantees all elements are positive.
This ensures the outputs can be mapped to mixing coefficients for each
isotope in the library. An isotopes mixing coefficient describes how
many counts in a given spectrum are attributable to that isotope.

The CNN model used in this work is shown in Fig. 4. The input
and output of the CNN are the same as the FC-NN. The difference
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between the CNN and FC-NN are the convolution and max pooling
layers. Convolution layers activations are created by convolving 1-D
filters with the previous layer’s signal. Max pooling is a sub-sampling
operation that attempt to combine low-level features and to encourage
spatial invariance by reducing the resolution of the previous layers [9].
After the convolution and pooling layers, the features are flattened into
a vector and fed into a fully-connected architecture. The weights of
the fully-connected network and the 1-D convolution filters are learned
through training.

3. Methods

3.1. Training set creation

In order to train an ANN, a training set must be provided. The
29 isotopes in the dataset are based on the American National Stan-
dards Institute performance criteria for hand-held instruments for the
detection and identification of radionuclides, ANSI N42-34-2006 [10].
From this set of isotopes, template spectra for each isotope were
simulated using GADRAS [11]. These sources are simulated using a
30 cm standoff distance. The default calibration for the templates is
set for a maximum gamma-ray energy of 3 MeV. To teach the model
a range of different detector calibrations, each spectrum’s channels
were linearly rebinned by some percent. After rebinning, the resulting
spectrum was reconstructed using third order spline interpolation with
the new bin positions. The magnitude of each rebinning was uniformly
chosen between a ± 25%. Based on lab observations using an Ortec
905-3 NaI spectrometer, the average background count rate was set
at 65 counts per second (cps). Each spectrum had a total number of
count logarithmically distributed between 6.5 × 102 and 6.5 × 104.
Each isotope, excluding those in background, had an equal probability
of being included in each spectrum. The counts from background
were distributed uniformly between background thorium, background
uranium, and background 40K.

3.2. Network structure and hyperparameter search

In general, ANNs have a tendency to memorize their training set in a
process called overtraining. An overtrained ANN will tend to incorrectly
identify novel data. To prevent this, hyperparameters were used in
the present work to prevent overfitting and optimize performance.
Unfortunately, there is currently no known method to know which
hyperparameters have an impact on model performance before training.
Because of this, a number of popular hyperparameters are typically
added to a model and a random hyperparameter search is used to
identify those which are important [12]. For the FC-NN, a network
structure and hyperparameter choices are based on a previously trained
FC-NN [2]. Due to a large observed variance in output from different
FC-NN’s with different weight initialization, the output from 10 unique
FC-NN’s were averaged using a technique called bagging [13].

For CNN structures, shown in Fig. 4, hyperparameters include the
number of convolutional filter, kernel size for each convolution filter,
number of nodes for the fully connected layers, and the dropout rate.
A random search was performed over the predefined hyperparameter
space, shown in Table 1, and the best hyperparameter combination
is chosen based on the performance of CNN on a separate validation
dataset.

4. Results and discussion

To investigate how the FC-NN and CNN compared to each other,
four simulated datasets were considered. Each dataset includes the 29
isotopes in the training library. For each isotope, 100 single-isotope
spectra of 9 different mixing coefficients were simulated. The mixing
coefficients were evenly spaced between [0.1, 0.9]. In addition to this,
each spectrum had its calibration randomly changed and a random

Table 1
Hyperparameter Space for CNNs.

Hyperparameter Values

# filters 3, 5, 7, 9, 11

kernel size 5, 10, 15, 20, 25, 30
35, 40, 45, 50, 55, 60

dropout rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5
dense layer size 32, 64, 128, 256

background generated in the same way as the training set. The first
dataset investigated how well each algorithm worked in the best-case
scenario, when the data are generated from the same distribution used
to train the algorithms. The three additional datasets are adversarial
examples, which are meant to represent real-world issues that could
affect algorithm performance. Performance in these datasets explores
the generalization limits of the presented training methodology for
automated isotope quantification. For machine learning algorithms,
generalization describes the ability for an algorithm to fit data outside
the training dataset.

The first adversarial dataset used the same spectral templates as
the training dataset for the sources, but not the background. The back-
ground was sampled from a 2" × 2" NaI detector with a 10 h integration
time. The second adversarial dataset was simulated using template
spectra simulated with standoff distances of 15 cm and 60 cm. Changing
the standoff distance changes the shape of the spectrum by affecting
the peak-to-total ratio and shape of the Compton continuum. The third
adversarial dataset was created using template spectra simulated with a
full-width-at-half-maximum (FWHM) of 10% at 662 keV. The training
set used a FWHM of 7.44% at 662 keV. The wider FWHM distorts the
spectrum by making photopeaks close to each other more difficult to
differentiate.

4.1. Algorithm quantification performance on simulated spectra

Spectra with a total of 103 counts were simulated in the manner
described above. Using the outputs, a box-and-whisker plot was created
comparing the outputs of the FC-NN and CNN. This plot is shown in
Fig. 5. In general, the CNN outperforms the FC-NN in terms of variance.
In addition to this, the median outputs of the CNN were closer to the
true mixing coefficient for mixing coefficients between 0.1 and 0.5. The
median outputs are comparable between the two models for coefficients
between 0.6 and 0.8.

4.2. Algorithm quantification performance on adversarial datasets

The three adversarial datasets presented represent performance in
spectra with a real background radiation field, varying standoff distance,
and a detector response with a wider FWHM than the models were
trained with.

4.2.1. Simulated sources injected into measured background
Fig. 6 shows significant performance degradation from both models

when quantifying spectra simulated with a measured background in-
stead of the simulated background used in training. The CNN performed
particularly poorly, underestimating the true mixing coefficient with a
large variance. This may indicate the CNN is particularly sensitive to
background in count-starved spectra. The FC-NN also underestimated
the true count contribution, but compared to the CNN the median
of the output distributions were closer to the true mixing coefficient,
especially as the mixing coefficient increased. Because each channel of
the spectrum is weighted by the coefficients of the network, previously
described in Fig. 2, the FC-NN may exploit the spectrum’s photopeaks,
like a region of interest (ROI) algorithm. Because the ratio of counts
in photopeaks will not change significantly with varying background,
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Fig. 5. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over
all library isotopes. The total counts in each spectrum is 103. Each spectrum is simulated
using the same template as the training dataset. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

it may be well suited to quantify isotopes in spectra with unknown
background radiation patterns.

In contrast to the FC-NN, the CNN weighs responses to convolution
filters, explained in Fig. 4, in a way that may be able to use the entire
gamma-ray spectrum. The potential drawback is that the convolution
filters learned by the CNN that worked well for simulated background
may not work well for real background radiation. This was seen in the
CNNs poor performance in Fig. 6.

CNN performance improved with additional counts, as seen in Fig. 7.
For mixing coefficients between 0.4 and 0.7 The CNN had a smaller
variance in its outputs and modes closer to true mixing coefficients
compared to the FC-NN. The increase in counts lowered the variance
between channels in the simulated sources. Low channel-to-channel
variance may help the CNN recognize the pattern of the source tem-
plates, similar to how a template matching algorithm might improve
with a lower channel-to-channel variance signal.

The FC-NN operates similarly with 103 and 104 counts, keeping a
large variance while underestimating the true mixing coefficient. The
slight improvement in the FC-NN’s performance are explainable if the
FC-NN acted primarily like a region of interest algorithm. The increase in
counts may not change the regions explored by the FC-NN. Because the
FC-NN was comparing the same regions with a background outside the
training set, the relationship (for example the ratio of counts between
photopeaks) between these regions may be outside those learned by the
FC-NN. This implies that generalizing to backgrounds outside those used
in the training set will be more difficult for the FC-NN compared to the
CNN.

4.2.2. Effects of standoff distance on quantification performance
In general, both the FC-NN and CNN had a larger variance in output

when quantifying spectra with a standoff distance of 15 cm, Fig. 8,
compared to spectra with a standoff distance of 30 cm, Fig. 5. The
increase in variance was more severe for the FC-NN compared to the
CNN. The median of the predictions was also consistently higher for
the CNN than for the FC-NN. This is likely due to the difference in
the peak-to-total ratios of the different simulation templates. Templates
with a 15 cm standoff have a peak-to-total ratio of 0.29 at 662 keV,
whereas the training templates used a 30 cm standoff and have a peak-
to-total ratio of 0.25 at 662 keV. Because of the increased peak-to-total
ratio, a model that employs photopeaks (instead of the full spectrum)

Fig. 6. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over all
library isotopes. The total counts in each spectrum is 103. In each spectrum, the source is
simulated using the same template as the training dataset and the background is sampled
from a measured spectrum. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over all
library isotopes. The total counts in each spectrum is 104. In each spectrum, the source is
simulated using the same template as the training dataset and the background is sampled
from a measured spectrum. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

to quantify isotopes will overpredict an isotopes true mixing coefficient.
The large variance in output combined with underprediction from the
FC-NN indicates poor generalization with respect to changes in standoff
distance in count starved spectra.

In spectra with more counts FC-NN performance improves, shown
by an increase in the median outputs seen in Fig. 9. Despite this
improvement the FC-NN still has a larger output variance than the
CNN, indicating that the CNN generalizes better to changes in standoff
distance.
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Fig. 8. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over
all library isotopes. The total counts in each spectrum is 103. In each spectrum, the source
is simulated using a standoff distance of 15 cm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over
all library isotopes. The total counts in each spectrum is 104. In each spectrum, the source
is simulated using a standoff distance of 15 cm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Increasing the standoff distance to 60 cm decreases the peak-to-total
ratio to 0.21 at 662 keV. This decreased ratio leads to underpredictions,
seen in Figs. 10 and 11. The trends for the larger standoff distance are
similar to those for a smaller standoff distance. In general the variance
in the outputs of the CNN are smaller than the outputs from the FC-NN.

4.2.3. Effects of detector full-width-at-half-maximum on quantification per-
formance

Spectra in the following dataset have a FWHM of 10% at 662 keV.
This is larger than spectra in the training dataset, which have a FWHM of
7.44% at 662 keV. A FWHM of 10% at 662 keV represents a worst-case
scenario for a typical NaI detector. The larger FWHM results in wider

Fig. 10. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over
all library isotopes. The total counts in each spectrum is 103. In each spectrum, the source
is simulated using a standoff distance of 60 cm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over
all library isotopes. The total counts in each spectrum is 104. In each spectrum, the source
is simulated using a standoff distance of 60 cm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

spectral peaks, which may overlap to form spectral templates different
from those used in the training dataset. Good performance indicates that
the model is insensitive to changes in FWHM and has generalized with
respect to changes in different radiation detector’s FWHM.

Seen in Fig. 12, the modes of each dataset are consistently below
their respective true mixing coefficients. This could be evidence that
each model is close to generalizing to changes in FWHM. This may
be due to each model identifying and quantifying spectra using ROI’s
around photopeaks in each spectrum. Because the photopeaks in these
spectra are wider then those used during training, consistently fewer
counts will be in the ROI’s found by the algorithms trained with
narrower ROI’s. Despite this, the model performance was worse on this
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Fig. 12. Predicted mixing coefficient for the FC-NN (blue) and CNN (red), averaged over
all library isotopes. The total counts in each spectrum is 103. Each spectrum is generated
using templates with a wider FWHM than the training dataset. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

dataset than the dataset in Fig. 5, indicating generalization performance
can be improved with respect to changes in FWHM.

5. Conclusion

In general, the CNN had a smaller variance on outputs for each
dataset explored compared to the FC-NN. This may be because the
FC-NN focuses primarily on photopeaks while the CNN is able to use
both the photopeaks and other features like the Compton continuum.
For this reason, future work applying machine learning to spectroscopy
may benefit by focusing on convolutional models in the place of fully
connected architectures.

As discussed in Section 4.2.1, both models are very sensitive to
changes in the background radiation field. This implies that the current
method of simulating background is insufficient for either model to
generalize to real background radiation conditions. This may be im-
proved by adding measured background templates to the simulations or
by varying the simulated background templates so they represent more
realistic background.

As seen in Section 4.2.2 the FC-NN and CNN tend to overpredict
mixing coefficients when standoff distances are smaller than those
used in the training dataset and underpredict mixing coefficients when
standoff distances are larger. This shows that both algorithms primarily
use photopeaks to quantify isotopes in spectra. This also shows some
generalization to spectra with standoff distances outside the training
set. Improvements can be made by adding additional templates with
different standoff distances.

As seen in Section 4.2.3, both models have generalized to changes in
FWHM. This motivates future gamma-ray spectroscopy training datasets
incorporate different FWHM’s on a coarse grid.

Acknowledgments

The authors would like to thank the National Nuclear Security Ad-
ministration Consortium for Verification Technology under Department
of Energy National Nuclear Security Administration award number DE-
NA0002534.

References

[1] M. Rawool-Sullivan, J. Bounds, S. Brumby, L. Prasad, J. Sullivan, Steps toward auto-
mated gamma ray spectroscopy steps toward automated gamma ray spectroscopy:
How a spectroscopist deciphers an unknown spectrum to reveal the radioactive
source.

[2] M. Kamuda, C.J. Sullivan, An automated isotope identification and quantification
algorithm for isotope mixtures in low-resolution gamma-ray spectra, Radiat. Phys.
Chem.

[3] R. Abdel-Aal, Comparison of algorithmic and machine learning approaches for the
automatic fitting of gaussian peaks, Neural Comput. Appl. 11 (1) (2002) 17–29.

[4] R. Abdel-Aal, M. Al-Haddad, Determination of radioisotopes in gamma-ray spec-
troscopy using abductive machine learning, Nucl. Instrum. Methods Phys. Res. A
391 (1996) 275–288.

[5] M. Medhat, Artificial intelligence methods applied for quantitative analysis of
natural radioactive sources, Ann. Nucl. Energy 45 (2012) 73–79.

[6] V. Vigneron, J. Morel, M. Lepy, J. Martinez, Statistical modelling of neural networks
in y-spectrometry, Nucl. Instrum. Methods Phys. Res. A 396 (1996) 642–647.

[7] M. Kamuda, J. Stinnett, C.J. Sullivan, Automated isotope identification algorithm
using artificial neural networks, IEEE Trans. Nucl. Sci. 64 (2017) 1858–1864.

[8] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-
propagating errors, Nature 323 (1986) 533–536.

[9] D. Scherer, A. Müller, S. Behnke, Evaluation of pooling operations in convolutional
architectures for object recognition, in: K. Diamantaras, W. Duch, L.S. Iliadis (Eds.),
Artificial Neural Networks – ICANN 2010, Springer, Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 92–101.

[10] American National Standard Performance Criteria for Hand-Held Instruments for
the Detection and Identification of Radionuclides, ANSI N42.34-2006 (2007).

[11] D.J. Mitchell, L.T. Harding, GADRAS isotope ID user’s manual for analysis of
gamma-ray measurements and api for linux and android, SAND2014-3933.

[12] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach.
Learn. Res. 13 (2012) 281–305.

[13] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140, http://dx.
doi.org/10.1007/BF00058655.

6

http://refhub.elsevier.com/S0168-9002(18)31377-9/sb3
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb3
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb3
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb4
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb4
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb4
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb4
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb4
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb5
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb5
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb5
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb6
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb6
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb6
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb7
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb7
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb7
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb8
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb8
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb8
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb9
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb12
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb12
http://refhub.elsevier.com/S0168-9002(18)31377-9/sb12
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655

	A comparison of machine learning methods for automated gamma-ray spectroscopy
	Introduction
	Artificial Neural Networks
	Methods
	Training Set Creation
	Network Structure and Hyperparameter Search

	Results and Discussion
	Algorithm Quantification Performance on Simulated Spectra
	Algorithm Quantification Performance on Adversarial Datasets
	Simulated Sources Injected Into Measured Background
	Effects of Standoff Distance on Quantification Performance
	Effects of Detector Full-Width-at-Half-Maximum on Quantification Performance


	Conclusion
	Acknowledgments
	References


