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Abstract – GENIUSv2 is a discrete-facilities/discrete-materials nuclear fuel cycle systems 

analysis tool currently under development at the University of Wisconsin-Madison. It is designed 

not only to compute the capacity and mass flow data produced by other study tools but also to 

model the complex relationships between nuclear fuel cycle facilities; the institutions that own 

them; and the national, intranational, and/or transnational regions in which they operate. This 

paper describes novel modeling capabilities and methodological contributions present in 

GENIUSv2, including its treatment of the region-institution-facility hierarchy and its optimization-

compatible framework. We then present a number of test problems designed to demonstrate the 

code’s ability to closely reproduce results from another study tool (Idaho National Laboratory’s 

VISION code) and to richly model multi-region scenarios not easily captured by the data models 

of other codes currently available. 

 
I. INTRODUCTION 

 

Several properties of global nuclear fuel cycles as 

dynamic systems make them especially difficult to model 

and analyze. Among these properties are the number of 

technologies one needs to simulate, the sensitivity of 

system-wide properties to small variations in the operation 

of those technologies, and the variety and complexity of the 

policy dimensions that directly influence system design and 

behavior. These problems call for system study tools that 

are at the same time detailed, flexible, robust, and 

generative.  

By detailed, we mean that they model a wide range of 

information about the nuclear fuel cycle scenarios being 

considered. Detailed study tools must model very specific 

facility deployments and facility operation modes. By 

flexible, we mean that they adapt well to new approaches 

for how those facilities should work together. Flexible tools 

are as free as possible from assumptions about what an 

advanced fuel cycle flowsheet will look like and are easy to 

modify or augment to model new approaches. By robust, 

we mean that they store and process the necessarily large 

data sets efficiently. Robust tools should use modern 

computing libraries and other resources. By generative, we 

mean that they can identify new, promising, or optimal fuel 

cycle scenarios. A generative system analysis tool is in a 

sense also a system design tool. 

The GENIUS project (Global Evaluation of Nuclear 

Infrastructure Utilization Scenarios) started at Idaho 

National Laboratory as the top-level, nuclear enterprise 

simulation tool in the Simulation Institute for Nuclear 

Enterprise Modeling and Analysis (SINEMA) framework
1
. 

As specified in that framework, GENIUS represented a 

promising approach with respect to the four criteria 

outlined above. The first implementation of the GENIUS 

code (hereafter ―GENIUSv1‖) was developed by Chris 

Juchau and Mary Lou Dunzik-Gougar and has been 

described in detail elsewhere
2,3

. An important step in this 

work was Juchau’s review of existing nuclear fuel cycle 

systems analysis tools
4
, wherein he identified important 

gaps in current modeling capabilities, gaps that would be 

filled by a GENIUS tool that functions as specified by 

SINEMA. GENIUSv1 met many of the requirements in 

that specification and demonstrated the kind of supply-and-

demand data one can generate with a multi-region, discrete-

facilities/discrete-materials (DF/DM) code
5
. 

Work on GENIUSv2 has proceeded at the University 

of Wisconsin-Madison since January 2007. In light of our 

four criteria for improved system study tools, it has been 

completely redesigned and re-implemented as an object-

oriented C++ application with Python-based pre- and post-

processing. This paper presents results from the 

GENIUSv2 testing and demonstration suite, after briefly 

discussing the following list of improvements to GENIUS 

modeling capability and computational methodology: 
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1. To improve the detail of the GENIUS tool, an 

intermediate level was added to the model hierarchy. 

GENIUSv2 models nuclear fuel cycle facilities 

(reactors, fuel fabrication, enrichment, etc.), the 

institutions that own them (e.g., utilities and  

governments), and the regions that those institutions 

operate in (e.g., countries or subdivisions thereof). In 

light of the economic and political questions raised by 

international proposals like the Global Nuclear 

Energy Partnership program, the need to model multi-

region, multi-institution scenarios is especially 

pronounced. 

2. To improve detail and flexibility, the material-

modeling hierarchy has been elaborated. GENIUSv2 

tracks individual ―lots‖ of fuel cycle feedstocks  

(yellowcake, UF6, separated materials, etc.) as well as 

individual fuel assemblies, but it still groups 

assemblies into batches (the smallest unit of material 

in GENIUSv1) for ease of use. 

3. To improve the tool’s generative capability, a user-

driven facility deployment mode was added to the 

more typical demand-driven mode. As will be 

explained, a user-driven mode is much more 

consistent with natural methods for optimization of 

the fuel cycle system. 

4. To further support optimization (and as a simple 

consequence of the DF/DM paradigm combined with 

a user-driven deployment in which supply of fuel 

cycle commodities may not always equal demand for 

them) a general algorithm has been developed for 

sensibly, consistently, and flexibly matching suppliers 

of a given fuel cycle commodity to their customers. 

5. To improve the tool’s robustness and ultimately 

support end-user data analysis, we have implemented 

a database methodology for storing and 

reconstructing the complete material and facility 

histories, which comprise a large, sparse, 

multidimensional data set. 

 

II. MODELLING 

II.A. Regions, Institutions, and Facilities 

Several of the currently available nuclear fuel cycle 

systems analysis tools—including VISION
6
, the Idaho 

National Laboratory code that is the tool-of-choice for the 

U.S. Department of Energy—do not easily support multi-

region simulations. Given the increasing interest in 

internationalization of the fuel cycle
7
, this difficulty is 

something of a liability, especially since a primary goal of 

multi-region systems analysis (where regions in this case 

would mostly likely represent separate countries) is to 

investigate potential policy mechanisms for inter-region 

cooperation. For instance, one especially interesting 

question multi-region codes can help answer involves fuel 

sale and/or leasing agreements between nations that own 

and operate their own fuel cycle facilities and those that do 

not. Nations that agree to forego developing fuel cycle 

infrastructures are likely to be quite concerned about the 

robustness of their fuel supply to interruptions caused by 

the changing winds of international relations.  

GENIUSv1 was designed from the start to be a multi-

region model. However, we determined for GENIUSv2 that 

another hierarchical level of granularity made sense in light 

of the facility-ownership structure in place in many large 

nuclear states. Thus, we introduced institutions, which 

represent the private and governmental organizations that 

own nuclear facilities in a particular region. As we go 

forward, this region-institution-facility (R-I-F) hierarchy 

will allow fairly detailed financial modeling of the global 

nuclear enterprise. For instance, the financial behavior and 

performance of two nuclear reactors operating in two 

different regions, or for two different institutions in the 

same region, are likely to be measured and evaluated quite 

differently based on debt structures, regulatory 

environments, etc. Thus, each region, institution, and 

facility can be assigned financial parameters such as tax 

and interest rates, in addition to a great deal of technical 

information about how they actually operate. 

Besides capturing the effects of institutional and 

regional heterogeneities, the R-I-F framework also provides 

the mechanism for communication and cooperation 

between the discrete facilities in the simulation. In 

particular, facilities need a mechanism for sending material 

orders to one another. As seen in Fig. 1, they do so by 

writing an offer of or request for material and passing this 

message up this hierarchy to the simulation manager, which 

performs a matching algorithm on the set of messages 

based on some set of rules (see III.B. Customer-Supplier 

Matching) and then passes instructions back down the 

hierarchy to the appropriate facilities. 

 

 

Fig. 1. GENIUSv2 inter-facility communication and cooperation 

model8. Note that the simulation manager makes decisions about 

material routing based on some set of rules about how the 

regions, institutions, and facilities in the model’s hierarchy are 

supposed to relate to one another. 

The GENIUSv2 implementation makes efficient use of 

the object-oriented programming concept of inheritance, 
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taking advantage of the fact that all nuclear fuel cycle 

facilities share a set of common data types (each has some 

construction time, operational time, cycle time, 

characteristic costs, etc.) and generic operational schema 

(request some feed material from a facility upstream, do 

some operation on it, and offer it to a facility downstream). 

All fuel cycle facility types, including reactors, are 

implemented as subclasses of an abstract facility class 

which establishes their common data and behavior. This 

practice eliminates code redundancy and facilitates 

flexibility and modularity; for each subclass, developers 

need only implement the data and behaviors unique to that 

particular type of facility. 

II.B. Materials 

Because it is intended to be used flexibly to support 

closed fuel cycle simulations, waste management studies, 

and non-proliferation analyses, GENIUSv2 must support a 

wide variety of material types and keep a complete record 

of the isotopic and facility histories of each individual 

material object in the simulation. To allow materials to flow 

to facilities in the smallest reasonably achievable quanta, 

we decided to model reactor fuel on an assembly-by-

assembly basis, rather than at the batch level as in 

GENIUSv1 (a batch in GENIUSv2 is simply a collection of 

fuel assembly objects). This decision has the added 

advantage of leaving the door open for GENIUSv2 to be at 

least loosely coupled to some sort of heterogeneous core 

physics package, although for the time being, we have 

employed the standard ―recipe‖-based reactor physics 

approximations used in VISION and other codes. 

Except for fuel assemblies, all other fuel cycle 

commodities are modeled as general ―lumps‖ of material. 

Thus, in addition to their isotopic and facility histories, 

these objects keep a record of what type of commodity they 

are (yellowcake, enriched or unenriched UF6, separated 

actinides, etc.) and what form (solid, liquid, gas) they are 

in. When not being directly operated on, they are stored in 

―buffers‖ at each facility, queues of material that represent 

the holding areas where material is stored before and after 

enrichment, fabrication, irradiation, reprocessing, etc. but 

before being sent to another facility. 

Two somewhat novel features of the GENIUSv2 

materials model are its flexible isotopic vectors and the 

―decay-on-demand‖ approach used to track how those 

vectors change over time. The former feature allows 

GENIUS to forgo committing to a hard-coded set of 

specific isotopes to track, which is attractive because 

comparing results from codes that track slightly different 

sets of isotopes can be a minor nuisance. The latter feature 

derives from the observation that, during runtime, facility 

operations only depend on the decayed isotopics of certain 

materials, and only at very specific points in the fuel cycle 

(e.g., when preparing to reprocess a given batch of spent 

fuel). Thus, GENIUS materials are only decayed at those 

times, which eliminates the significant computational 

burden of decaying every material object in the simulation 

at every time step. The time step-by-time step composition 

of each object can be reconstructed in post-processing as 

needed using the material history transaction points (see 

III.C. Material and Facility Tracking) and a special post-

processing implementation of the decay algorithm. 

 

III. METHODS 

 

As in any fuel cycle study tool, a wide range of 

computational methods are required to simulate the 

operations each facility performs on the different material 

streams and, more complexly, the way those operations 

work together as a system. In this section, we will limit the 

discussion to novel methods that we believe GENIUSv2 is 

the first to implement. 

III.A. Optimization-Compatible Framework 

Among the generative goals for the GENIUS code is 

the ability to identify promising fuel cycles by supporting 

one or more optimization modes. Of course, the challenges 

of global optimization of complex dynamic systems are 

well studied in the operations research literature (and 

shown to be tremendously difficult in general). Jain and 

Wilson have discussed the problem in the context of 

nuclear fuel cycle system study tools, focusing their 

attention on the elimination, where possible, of so-called 

heuristics—local methods that make expedient but ―short-

sighted‖ decisions when it is difficult to evaluate the 

consequences of a particular choice with respect to a global 

objective function
9
. While heuristics are difficult to 

eliminate entirely, minimizing their use is an important goal 

when trying to avoid artificially shrinking the decision 

space of interest and thus eliminating possible globally 

optimal solutions. 

We propose a framework compatible with the general 

goal of eliminating heuristics where possible and using 

global methods to search for promising fuel cycle facility 

deployments. Inspired by the ―optimal sub-problem‖ 

approach of dynamic programming, we decompose the fuel 

cycle optimization problem into a facility deployment 

problem (FDP) and a materials routing problem (MRP). 

Using optimization algorithms based on network flow 

theory (see III.B. Customer-Supplier Matching below), we 

solve or approximate the MRP, determining an attractive 

materials routing (with respect to a global objective 

function like a time- and region-averaged cost of 

electricity) for the given facility deployment. If for any 

deployment we can calculate an objective function value 

representing that deployment’s best-case-scenario materials 

routing, then we can use wrapper-based, iterative 

optimization technology (such as Sandia National 
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Laboratories’ DAKOTA
10

 tools) to gradually converge to 

better and better solutions to the FDP.  Of course, the 

decision space for the wrapper algorithm need not be 

limited to facility deployment; other scenario parameters 

could be included as well. 

It may be some time before this global optimization 

scheme can be implemented. However, we have described 

it here in some detail because (a) we have taken care to 

design an approach that we believe is compatible with this 

very useful but as-yet unavailable study tool capability and 

(b) that decision has consequences that may seem puzzling 

outside of the optimization context (such as the main 

application’s reliance on a user-driven, rather than demand-

driven, facility deployment). 

III.B. Customer-Supplier Matching 

A consequence of the decision to model both facilities 

and materials discretely is the necessity, unlike in fleet-

based, continuous-flow codes, to match individual 

customer facilities with individual suppliers. When 

combined with a user-driven, rather than demand-driven, 

deployment scheme, these matching algorithms need to be 

general enough to handle the very likely event that supply 

will not equal demand for a given fuel cycle commodity. In 

this section, we describe a network-flow formulation of 

such an algorithm.  

The nuclear fuel cycle system can be modeled as a 

multi-commodity network flow (NF) problem. In a 

network-flow formulation, the facilities of the fuel cycle 

serve as nodes—sources (supply nodes) and sinks (demand 

nodes) for the flow of various commodities (yellowcake, 

unenriched and enriched UF6, fuel, etc.) along arcs 

connecting facilities that are allowed to exchange material 

with one another. Our task in matching suppliers to 

customers at a given time step is to collect offers and 

requests, treating the senders of the former as source nodes 

and of the latter as sink nodes. The solution of the 

corresponding NF problem can then be translated into a set 

of instructions to the source-node facilities to send material 

to the sink-node facilities. 

The form for an M-commodity NF problem is given by 

Bertsekas
11

, who notes that there are no practical solution 

methods for the general case. However, the special network 

structure of the nuclear fuel cycle allows us to reduce the 

single M-commodity problem to M single-commodity 

problems, which can be solved very efficiently with 

available network solvers or even general linear program 

(LP) solvers. The key to this decomposition is the 

observation that the arc set, A, and node set, N, can be 

decomposed by commodity. For instance, the arcs 

connecting conversion plants to enrichment plants will 

exclusively carry unenriched UF6, and the arcs connecting 

reactors to separations plants will only ever carry spent 

fuel. Thus, we can decompose the arc and node sets by 

commodity and write the following M problems:  
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where the xij is the mass of the material traveling from node 

i to node j (i.e., on arc i,j ), aij is the unit cost of that flow, 

bij and cij are the upper and lower bounds of the mass flow 

on arc i,j, and si is the signed divergence of node i (si is 

greater than zero and equal to the supply at i if i is a source 

and is less than zero and equal to the demand at i if i is a 

sink). 

In order to guarantee feasibility (i.e., that an optimal 

solution can exist), and in particular to handle the case 

where supply does not equal demand, we add an artificial 

source or sink node for each problem. The divergences of 

these nodes are chosen to equalize supply and demand. 

Flow to or from these artificial nodes measures infeasibility 

of the real network and thus signifies unused supply or 

unmet demand, so we set arc costs for these nodes very 

large, in the hope that the algorithm does not need to push 

any flow on them (flow on these arcs does not correspond 

to any real instruction to send material from one facility to 

another). Fig. 2 illustrates a sample network, including the 

artificial nodes. 

 

 

Fig. 2. Schematic of a network flow problem for matching two 

suppliers of a particular commodity to two customers. Artificial 

sources and/or sinks are added to ensure feasibility and measure 

supply/demand imbalance. Arc costs can be lowered between 

nodes that have a special affinity for trade with each other. 

Eventually, arc costs can be dynamically calculated to 

account for political and economic factors that will 

introduce constraints and incentives for certain material 

supply relationships.  For example, arc costs may include 

real material costs, chosen from the Advanced Fuel Cycle 

Cost Basis
12

 or other appropriate source. In the meantime, 

we have implemented a system that sets arc costs in order 

to match according to affinities for trade between elements 
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in the R-I-F hierarchy. These affinities can be set by the 

user, but the default is that facilities owned by the same 

institution have a higher affinity for trading with one 

another than facilities owned by two different institutions, 

and facilities in the same region have a higher affinity than 

facilities in two different regions. At the very ends of the 

affinity scale are values that cause two facilities to 

automatically be matched whenever they are both ―in the 

market‖ or to never be matched even if there is no other 

option. These latter values can be used to model long-term 

contracts and embargos, respectively. 

III.C. Material and Facility Tracking 

 

Another consequence of our DF/DM approach is that it 

creates hundreds of thousands if not millions of individual 

material objects during the life of even modestly-sized 

systems. And if we want GENIUS to be useful for waste 

management and non-proliferation studies, we need to be 

able to fully reconstruct the isotopic histories of each of 

those materials. 

Thus, we have implemented a database solution for 

efficiently storing isotopic and facility histories of materials  

that are no longer needed by the system and can be deleted 

from memory during runtime. When a material is deleted, 

its history is written to a facility history table (Fig. 3, top). 

Each entry in the table has a column recording the 

material’s ID number, the time of the transfer, the source 

and destination facility, and an isotope code. A second table 

maps those isotope codes to a particular composition via a 

specially formatted ―blob‖ of binary data. 

A transaction-based storage strategy is much more 

efficient than an array-based one because these data are by 

nature very sparse (the probability that two random 

facilities are exchanging materials at a given time step is 

very small, so most entries in an array representation would 

be zero). The database approach has the added advantage 

of being easy to query when the simulation is over, greatly 

aiding in reconstruction of the simulation. In fact, our light-

weight Python post-processor is little more than a wrapper 

around the database that knows something of the database 

structure and so can query it as efficiently as possible. 

Conveniently, other tables in the database double as an 

input file, thus making it possible to specify very detailed 

scenarios in a sensible manner (Fig. 3, bottom). 

 

 
 

 

Fig. 3. Screenshots from GENIUS database files. The top image 

shows the output from the facility history table for a 1000+ 

reactor problem and almost 200,000 individual material transfers. 

The bottom image shows part of an input file constructed from 

the PRIS reactor database. 

IV. SAMPLE PROBLEMS AND RESULTS 

 

As the GENIUSv2 source code begins to stabilize and 

its feature set continues to develop, we are specifying and 

working through a testing suite that serves several 

purposes: to confirm that the code is operating as we expect 

it to, to show that it gives comparable results to other 

popular codes, to demonstrate the code’s performance on 

large problems, and to highlight some of its key features 

via problems that are difficult or impossible to model in 

other codes. We present here a sampling of results from test 

suite problems currently under investigation. 

IV.A. Reactor Benchmarking 

Because VISION has emerged as the standard tool for 

performing fuel cycle systems analysis calculations, we 

present benchmarking problems comparing GENIUS and 

VISION results for a series of analogous test problems of 

increasing complexity. Throughout the discussion it will be 

important to remember that analogous is the operative 

word. At a certain level of granularity, fleet-based, 

continuous-flow codes and DF/DM codes are simply 
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incompatible. However, the overall behavior, including 

integrated material throughputs, of each model’s 

approximation of any given scenario should and do give 

nearly to the same answers. Note that each problem was 

run with VISION’s radioactive decay routines turned off, 

since the analogous routines in GENIUS are still being 

tested and debugged. 

Problem 1 is a single-reactor benchmark with no fuel 

fabrication constraints, and its purpose is to compare 

accumulated spent fuel mass and isotopics in GENIUS and 

VISION. The parameters for this simulation and the three 

that follow it are given in Table I and represent a 

combination of parameters that in our experience tend to 

work well in the VISION model. 

 
TABLE I 

VISION-GENIUS Benchmark Reactor Parameters 

Parameter Value 

Start Year 2000 

End Year 2099 

Construction + License Time 6 years 

Operating Time, OT 60 years  

Power Capacity, P 1050 MWe 

Capacity Factor, CF 0.90 

Thermal Efficiency, η 0.34 

Cycle Time, T 12 months 

Fuel Burnup,  Bu 51 GWd/tHM 

Fuel Batches Per Core, N 5 

 

The fresh and spent fuel isotopics for the GENIUS 

case are based on the mass fractions from VISION’s LWR 

fuel recipe through interpolation for 51 GWd/tHM of 

burnup. To discretize this scheme for GENIUS, we need 

only multiply these fractions by some total fixed core mass, 

M, and then convert each isotopic mass to number density, 

which is how GENIUS materials store their compositions 

natively. Since VISION is implemented in a stock-and-flow 

systems dynamics tool, it calculates a continuous fuel 

consumption rate by quarter-year time step according to the 

following formula: 

 

 
)(

)(

Bu

CFP
m   (2) 

 

This amount of mass, which constitutes (1/N)th of the total 

core, emerges from the reactor during the cycle period T, so 

the total core mass for a GENIUSv2 reactor using this 

recipe is  

 
core

tHM

Bu

CFPNT
NTmM 459.99

)(

)(  (3) 

In Problem 1, reactor construction and licensing start 

in 2000, and once the reactor begins operating it runs for its 

designated operating time before being decommissioned. 

We can do a simple hand calculation to compute the total 

mass we expect to be ejected from a reactor for an 

idealized real-word refueling scheme: At startup, N batches 

are inserted (total mass M). During each normal year of 

operation one batch is inserted and one ejected (batch mass 

M/N). In the decommissioning year, all N batches currently 

in the core are ejected (total mass M). Thus, the total 

ejected mass, Mej, should be (neglecting E=mc
2
 losses): 

 ktHMMOT
N

M
Mej 273.1)1(  (4) 

Table II shows the results of the hand calculation and 

the error in the two simulations with respect to that 

prediction, and Fig. 4 shows the codes’ behavior as a 

function of time. The GENIUS underestimate for the total 

is due to a conservation of mass violation in our procedure 

for reproducing the VISION discharge isotopic recipe; we 

miscalculate the mass of the isotopes that VISION lumps 

together and labels as ―_OTHER‖ because GENIUS stores 

number densities rather than masses natively and so cannot 

compute consistent masses for the _OTHER isotopes. The 

VISION overestimate results from its particular 

implementation of modeling a discrete process like 

refueling in a continuous manner.  This analysis suggests 

that VISION is a suitable reference against which to 

compare GENIUS, and indicates the magnitude of 

discrepancy that can be expected in comparing more 

complex scenarios.  

Table II 

Total Spent Fuel Mass Comparison – One Reactor 

Calculation Method Total Ejected 

Mass  

[kt HM] 

Error 

 

Hand Calculation 1.273 -- 

VISION Simulation 1.293 +1.57% 

GENIUS Simulation 1.267 -0.47% 
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Fig. 4. Integrated total mass flow from the single reactor in 

Problem 1. Because GENIUS is a discrete-flow code, it handles 

reactor startup and decommissioning in a straightforward way. 

This reasonable agreement extends to the isotopic 

level. Fig. 5 plots results for the discharge isotopics of the 

five largest actinide streams in both simulations. The end-

of-simulation discrepancies are of the same magnitude as 

when we compare total masses; the differences in the 

GENIUS result with respect to the VISION results fall 

between 1.81% and 2.05% (see first column of Table III). 
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Fig. 5. Integrated mass flow from the single reactor in Problem 1, 

for the five largest actinide streams (note semi-log scale). The 

end-of-simulation errors in the GENIUS results with respect to 

the VISION results for each element are given in the first column 

of Table III. 

To ensure that these results scale appropriately, for 

Problem 2 we reran the same test but with ten such 

reactors. Because these reactors were identical to the first 

one and all begin operating at the same time as in the single 

case, we expected and observed magnitudes exactly ten 

times greater than in the single reactor case and with the 

same end-of-simulation discrepancies.  

In Problems 3 and 4, we complicate facility 

deployment by specifying growth curves. As mentioned 

earlier, GENIUSv2 requires a user-driven facility 

deployment in order to avoid using a deployment heuristic. 

Of course, calculating a reactor deployment to meet an 

arbitrary demand curve is a fairly trivial problem, so we 

have written the capability for doing so into the GENIUSv2 

pre-processor. Thus, we choose for Problem 3 a stepwise-

linear growth case where we start building reactors in 2000 

and increase the total capacity by one reactor each year 

(requiring two new reactors per year starting in 2067 to 

account for one retirement per year during those final 34 

years).  

To save space, we forego plotting the straightforward 

(and identical) capacity curves for the VISION and 

GENIUS results for this first growth scenario and proceed 

directly to the mass flow results. These are shown in Fig. 6 

(with isotopic breakdowns again in Table III), and they 

once again show good agreement. In fact, we see that the 

VISION-GENIUS discrepancy shrinks measurably and that 

this time GENIUS gives a larger result. Careful 

examination of Fig. 4 suggests an explanation. Because of 

the differences in how they handle startup and 

decommissioning, the time-integrated ejected mass values 

for GENIUS reactors are higher than for VISION during 

most of the reactor’s lifetime (because VISION only ejects 

half a batch worth of fuel in the first year) but are lower 

than for VISION once decommissioning is complete 

(because VISION reactors consume more total lifetime fuel 

than their GENIUS counterparts, as we saw in Table II). 

Thus, we get some error-canceling. And because 94 of the 

128 total reactors built during the simulation have not yet 

been decommissioned in 2100, the VISION fleet lags 

behind the GENIUS fleet in terms of fuel mass ejected so 

far, even though in the end each of the VISION reactors 

will have used slightly more fuel than the GENIUS 

reactors. 
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Fig. 6. Integrated total mass flow from the reactor fleet in 

Problem 3. The end-of-simulation errors in the GENIUS results 

with respect to the VISION results for total mass and the five 

main actinide streams are given in the third column of Table III. 

Problem 4, the final VISION-GENIUS benchmark 

problem, is for exponential growth in electricity demand. 

We choose an initial demand of 10 GWe and a demand 

growth rate of 2% per year. We include ten ―legacy‖ 
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reactors that exist when the simulation starts. They retire, 

one per year, starting in 2029.  

The mass flow results for the VISION and GENIUS 

simulations of this deployment are given in Fig. 7. We see 

that GENIUS returns a lower total mass than VISION; as 

we noted in Problem 3, the higher the percentage of total 

reactors that reach decommissioning by the end of the 

simulation, the more likely VISION is to compute larger 

mass flows than GENIUS. In Problem 4, 31.7% of the 

reactors get decommissioned, as opposed to only 26.6% in 

the previous problem, so it’s not very surprising that 

GENIUS returns to computing a lower total mass output 

than VISION. Finally, note that the isotopic discrepancies 

with respect to VISION case are given in the final column 

of Table III and once again show reasonable agreement at 

that level of detail as well. 
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Fig. 7. Integrated total mass flow from the reactor fleet in 

Problem 4. The end-of-simulation errors in the GENIUS results 

with respect to the VISION results for total mass and the five 

main actinide streams are given in the fourth column of Table III. 

TABLE III 

Summary of Isotopics Results for Benchmark Problems 

 VISION-GENIUS Discrepancy 

(GENIUS error with respect to VISION result) 

Material 

Stream 

1 2 3 4 

Total Mass -2.00% -2.00% 0.32% -0.53% 

Uranium -1.93% -1.93% 0.38% -0.47% 

Plutonium -2.05% -2.05% 0.27% -0.58% 

Neptunium -1.89% -1.89% 0.43% -0.43% 

Americium -1.91% -1.91% 0.40% -0.45% 

Curium -1.81% -1.81% 0.51% -0.34% 

 

IV.B. Large,Three-Region Once-Through Scenario 

Finally, we present Problems 5 and 6, two once-

through problems that demonstrate GENIUSv2’s ability to 

be scaled up to larger scenarios and that point to the 

richness and flexibility of the R-I-F model and our 

formulations for solving the MRP. 

The facility deployment for Problems 5 and 6 is given 

in Table IV. Both of the reactor regions contain three 

institutions: a small and a large fuel fabricator and reactor 

operator building either PWRs or PHWRs to match a linear 

demand curve. The third region contains only a large 

fabricator with facilities for both LWR and PHWR fuel. 

The parameters for both types of reactors are given in 

Table V. The precise fuel fabrication capacities were 

chosen to match reactor batch sizes in order to avoid the 

unrealistic scenario of splitting a fuel batch order between 

two different fabricators. Future work will explore 

optimization techniques to relax this constraint in a way 

consistent with our network flow model. 

We note briefly that this is a fairly large problem. It 

calls for construction 748 total reactors (compared to 130 

in Problem 3, the largest of our VISION benchmark 

problems) and records 43,521 individual material transfers 

(9,612 in Problem 3). We will report more extensively on 

GENIUSv2 performance data at a later time. 

 
TABLE IV 

Three-Region Problem – Facility Deployment 

Region Institution Facilities 

1 

1 
1 PWR in Jan. 1970 

Linear growth: 1.71 GWe/year  

2 1 LWR Fuel Fab (78.66 tHM/month) 

3 1 LWR Fuel Fab (157.3 tHM/month) 

2 

4 
1 PHWR in Jan. 1970 

Linear growth: 675 MWe/year  

5 1 PHWR Fuel Fab (333.7 tHM/month) 

6 1 PHWR Fuel Fab (667.3 tHM/month) 

3 7 
1 LWR Fuel Fab (157.3 tHM/month) 

1 PHWR Fuel Fab (667.3 tHM/month) 

 

TABLE V 

Three-Region Problem – Reactor Parameters 

Parameter Value 

 PWR PHWR 

Start Year 1970 

End Year 2099 

Construction + License Time 5 years 

Operating Time, OT 50 years  

Capacity Factor, CF 0.90 

Power Capacity, P [MWe] 1000 600 

Thermal Efficiency,  0.33 0.30 

Cycle Time, T [months] 18 12 

Fuel Burnup, Bu [GWd/tHM] 45 7 

Fuel Batches per Core, N 4 1 

 

In Problem 5, we allow the GENIUS matching 

algorithm to solve the MRP according to the default 

affinities described in III.B. Customer-Supplier Matching. 

In Problem 6, we alter the default behavior by specifying 

two rules: Institutions 1 and 4 (the reactor operators) get 

preferentially matched with Institution 7 (the extra-regional 
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fuel fabricator) as if they were all the same Institution. This 

affinity assignment could represent any number of 

modeling decisions, including to simulate a long-term 

contract between Institutions 1 and 7 and 4 and 7; to 

signify that all three are, in fact, owned by the same 

company; or to capture some price advantage benefiting 

Institution 7. Fig. 8 (PWRs) and Fig. 9 (PHWRs) show 

results for the cumulative travel of fabricated fuel from the 

various suppliers to the reactor fleets in the two different 

problems. In the top of each figure, we see the default 

behavior at work; the extra-regional fabricator is the 

supplier of last resort and is only purchased from 

consistently when the order density is high enough that the 

fabricators in the reactor regions are always working at 

capacity. Conversely, the bottom plot of each figure shows 

that the foreign fabricator is now preferred.  
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Fig. 8. Change in matching of PWR fuel fabricators to reactors 

placing orders. When the reactor operator’s affinity for trade with 

Institution 7 is increased sufficiently, it becomes the favored 

supplier even though it’s located in another region. 
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Fig. 9. Same as Fig. 8, except for the PHWR region’s fleet. Note 

the substantially different material routing based on one change to 

the input file. 

We expect this modeling capability to be especially 

useful for exploring the behavior of the global fuel cycle 

system under many proposed modes of international 

cooperation. In particular, R-I-F hierarchical matching 

under carefully chosen arc costs has the potential to help 

policy makers understand the effects of tools like trade 

agreements, tax incentives, long-term contracts, and other 

mechanisms.  

 

V. CONCLUSIONS AND FUTURE WORK 

 

We conclude from this work that GENIUSv2 is 

sufficiently detailed to closely approximate the kinds of 

nuclear fuel cycle scenarios modeled with codes like 

VISION, sufficiently robust to store and process the large 

amount of data that accumulate when modeling those 

scenarios discretely, and sufficiently flexible to model 

technical and socio-economic relationships between the 

various entities in a region-institution-facility hierarchy. 

The latter point is perhaps the most important, since those 

relationships are both key to improving our understanding 
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of next-generation fuel cycles and difficult to explore with 

most of the available tools. 

Ongoing and immediate future work on GENIUSv2 

includes rigorous testing and benchmarking of its packages 

for radioactive decay and spent-fuel reprocessing. 

Combined with the relatively stable and straightforward 

implementations of the front-end facilities that already exist 

in the code, these tools will complete GENIUSv2’s ability 

to model closed nuclear fuel cycles. At that point, we hope 

the code will be useful for our group and other end users 

interested in studying such systems. In particular, we plan 

to use GENIUS to probe questions of fuel cycle robustness 

and to model various scenarios for an international fuel 

bank. Other planned applications include a study of 

repository isotopics and radiotoxicity. Our longer-term 

methodological focus is on continuing to develop 

techniques for system-wide optimization. In particular, we 

are interested in the potential for wrapper-based iterative 

techniques as well as agent-based decision modeling. 
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