
Introducing yt 4.0: Analysis and Visualization of
Volumetric Data

This manuscript (permalink) was automatically generated from yt-project/yt-4.0-paper@715efc5 on June 3, 2024.

Authors

The yt Project
· yt-project · yt_astro
NumFOCUS

Matthew Turk ✉
 0000-0002-5294-0198 · MatthewTurk · @powerso�our@mastodon.social

School of Information Sciences, University of Illinois at Urbana-Champaign; Department of Astronomy, University of

Illinois at Urbana-Champaign; National Center for Supercomputing Applications, University of Illinois at Urbana-

Champaign

Nathan J Goldbaum
 0000-0001-5557-267X · ngoldbaum · njgoldbaum

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

John A. ZuHone
 0000-0003-3175-2347 · jzuhone · astrojaz

Harvard-Smithsonian Center for Astrophysics

Cameron Hummels
 0000-0002-3817-8133 · chummels

Department of Theoretical Astrophysics, California Institute of Technology

Suoqing Ji
 0000-0001-9658-0588 · jisuoqing

Physics Department, University of California Santa Barbara

Meagan Lang
 0000-0002-2058-2816 · langmm

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Madicken Munk
 0000-0003-0117-5366 · munkm

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Britton Smith
 0000-0002-6804-630X · brittonsmith

University of Edinburgh

Kacper Kowalik
 0000-0003-1709-3744 · Xarthisius

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

https://yt-project.github.io/yt-4.0-paper/v/715efc533809818a68c62767928e9b8e6b0af802/
https://github.com/yt-project/yt-4.0-paper/tree/715efc533809818a68c62767928e9b8e6b0af802
https://github.com/yt-project
https://twitter.com/yt_astro
https://orcid.org/0000-0002-5294-0198
https://github.com/MatthewTurk
https://mastodon.social/@powersoffour
https://orcid.org/0000-0001-5557-267X
https://github.com/ngoldbaum
https://twitter.com/njgoldbaum
https://orcid.org/0000-0003-3175-2347
https://github.com/jzuhone
https://twitter.com/astrojaz
https://orcid.org/0000-0002-3817-8133
https://github.com/chummels
https://orcid.org/0000-0001-9658-0588
https://github.com/jisuoqing
https://orcid.org/0000-0002-2058-2816
https://github.com/langmm
https://orcid.org/0000-0003-0117-5366
https://github.com/munkm
https://orcid.org/0000-0002-6804-630X
https://github.com/brittonsmith
https://orcid.org/0000-0003-1709-3744
https://github.com/Xarthisius

Miguel de Val-Borro
 000-0002-0455-9384 · migueldvb

Planetary Science Institute

Jared W. Coughlin
 0000-0002-4373-4114 · jcoughlin11

National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

Corentin Cadiou
 0000-0003-2285-0332 · cphyc · cphyc

Department of Physics and Astrophysics, University College London; Institut d’Astrophysique de Paris

Michael Zingale
 0000-0001-8401-030X · zingale

Stony Brook University

Leigh Orf
 0000-0002-2677-6427 · leighorf

Space Science and Engineering Center, University of Wisconsin - Madison

Kelton Halbert
 0000-0001-6898-2731 · keltonhalbert

Cooperative Institute for Meteorological Satellite Studies, The University of Wisconsin, Madison

Clément Robert
 0000-0001-8629-7068 · neutrinoceros

Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, France

Christopher Havlin
 0000-0003-0585-8236 · chrishavlin

School of Information Sciences, University of Illinois at Urbana-Champaign

Stephanie Tonnesen
 0000-0002-8710-9206 · stonnes

Center for Computational Astrophysics, Flatiron Institute

Andrew Myers
 0000-0001-8427-8330 · atmyers

Lawrence Berkeley National Laboratory

Alex Gurvich
 0000-0002-6145-3674 · agurvich

Desika Narayanan
 0000-0002-7064-4309 · dnarayanan

Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611 USA;

University of Florida Informatics Institute, 432 Newell Drive, CISE Bldg E251, Gainesville, FL 32611; Cosmic Dawn Center

at the Niels Bohr Institute, University of Copenhagen and DTU-Space, Technical University of Denmark

Samuel W. Skillman
 0000-0002-7626-522X · samskillman

Outer Loop LLC

https://orcid.org/000-0002-0455-9384
https://github.com/migueldvb
https://orcid.org/0000-0002-4373-4114
https://github.com/jcoughlin11
https://orcid.org/0000-0003-2285-0332
https://github.com/cphyc
https://twitter.com/cphyc
https://orcid.org/0000-0001-8401-030X
https://github.com/zingale
https://orcid.org/0000-0002-2677-6427
https://github.com/leighorf
https://orcid.org/0000-0001-6898-2731
https://github.com/keltonhalbert
https://orcid.org/0000-0001-8629-7068
https://github.com/neutrinoceros
https://orcid.org/0000-0003-0585-8236
https://github.com/chrishavlin
https://orcid.org/0000-0002-8710-9206
https://github.com/stonnes
https://orcid.org/0000-0001-8427-8330
https://github.com/atmyers
https://orcid.org/0000-0002-6145-3674
https://github.com/agurvich
https://orcid.org/0000-0002-7064-4309
https://github.com/dnarayanan
https://orcid.org/0000-0002-7626-522X
https://github.com/samskillman

Axel Huebl
 0000-0003-1943-7141 · ax3l

Lawrence Berkeley National Laboratory

Elliott Biondo
 0000-0002-9088-1360 · elliottbiondo

Oak Ridge National Laboratory

Andrew Wetzel
 0000-0003-0603-8942 · arwetzel

University of California, Davis

Clayton Strawn
 0000-0001-9695-4017 · claytonstrawn

UC Santa Cruz

Alexander Lindsay
 0000-0002-6988-2123 · lindsayad

Idaho National Laboratory

Gabriel Altay
 0000-0002-4120-2907 · galtay

Free Agent

Erwin T. Lau
 0000-0001-8914-8885 · ethlau

Center for Astrophysics - Harvard & Smithsonian; University of Miami

Aaron Smith
 0000-0002-2838-9033 · astrosmith

Center for Astrophysics - Harvard & Smithsonian

Ji-hoon Kim
 0000-0003-4464-1160 · mornkr

Center for Theoretical Physics, Seoul National University

Hsi-Yu Schive
 0000-0002-1249-279X · hyschive

Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan; Physics Division, National Center for

Theoretical Sciences, Taipei 10617, Taiwan

Navaneeth S
 0009-0007-6922-0369 · themousepotato

Indian Institute of Technology Kharagpur

Brian W. O’Shea
 0000-0002-2786-0348 · bwoshea

Michigan State University

Tom Abel
 0000-0002-5969-1251 · yipihey

Kavli Institute for Particle Astrophysics and Cosmology, Stanford University

https://orcid.org/0000-0003-1943-7141
https://github.com/ax3l
https://orcid.org/0000-0002-9088-1360
https://github.com/elliottbiondo
https://orcid.org/0000-0003-0603-8942
https://github.com/arwetzel
https://orcid.org/0000-0001-9695-4017
https://github.com/claytonstrawn
https://orcid.org/0000-0002-6988-2123
https://github.com/lindsayad
https://orcid.org/0000-0002-4120-2907
https://github.com/galtay
https://orcid.org/0000-0001-8914-8885
https://github.com/ethlau
https://orcid.org/0000-0002-2838-9033
https://github.com/astrosmith
https://orcid.org/0000-0003-4464-1160
https://github.com/mornkr
https://orcid.org/0000-0002-1249-279X
https://github.com/hyschive
https://orcid.org/0009-0007-6922-0369
https://github.com/themousepotato
https://orcid.org/0000-0002-2786-0348
https://github.com/bwoshea
https://orcid.org/0000-0002-5969-1251
https://github.com/yipihey

Yash Gondhalekar
 0000-0002-6646-4225 · Yash-10

Birla Institute of Technology and Science, Pilani, Sancoale, Goa 403726, India

William J Gray
 0000-0001-9014-3125 ·

Nickolay Y. Gnedin
 0000-0001-5925-4580 · ngnedin

Fermilab

Cristian Joana
 0000-0003-4642-3028 · cjoana

Institute of theoretical physics, Chinese Academy of Science

Yuan Li
 0000-0001-5262-6150 ·

University of North Texas

Ryan Je�rey Farber
 0000-0002-0649-9055 · rjfarber

Max Planck Institute for Astrophysics

Jonah M Miller
 0000-0001-6432-7860 · Yurlungur

Los Alamos National Laboratory

Michael Ryan
 0000-0002-0378-5195 · mtryan83

Penn State University

Devin W. Silvia
 0000-0002-4109-9313 · devinsilvia

Michigan State University

Robert Jackson
 0000-0003-2518-1234 · rcjackson

Argonne National Laboratory

Kenz Arraki
 0000-0002-3012-1167 · karraki

none

Alankar Dutta
 0000-0002-9287-4033 · dutta-alankar

Indian Institute of Science, Bangalore, India

Ritali Ghosh
 0000-0001-8643-7104 · RitaliG

Indian Institute of Science

Shaokun Xie
 0000-0001-5624-6008 · xshaokun

https://orcid.org/0000-0002-6646-4225
https://github.com/Yash-10
https://orcid.org/0000-0001-9014-3125
https://orcid.org/0000-0001-5925-4580
https://github.com/ngnedin
https://orcid.org/0000-0003-4642-3028
https://github.com/cjoana
https://orcid.org/0000-0001-5262-6150
https://orcid.org/0000-0002-0649-9055
https://github.com/rjfarber
https://orcid.org/0000-0001-6432-7860
https://github.com/Yurlungur
https://orcid.org/0000-0002-0378-5195
https://github.com/mtryan83
https://orcid.org/0000-0002-4109-9313
https://github.com/devinsilvia
https://orcid.org/0000-0003-2518-1234
https://github.com/rcjackson
https://orcid.org/0000-0002-3012-1167
https://github.com/karraki
https://orcid.org/0000-0002-9287-4033
https://github.com/dutta-alankar
https://orcid.org/0000-0001-8643-7104
https://github.com/RitaliG
https://orcid.org/0000-0001-5624-6008
https://github.com/xshaokun

Shanghai Astronomical Observatory, Chinese Academy of Sciences; School of Astronomy and Space Sciences,

University of Chinese Academy of Sciences

Jill P. Naiman
 0000-0002-9397-6189 · jnaiman

School of Information Sciences, University of Illinois, Urbana-Champaign

Ronan Hix
 0000-0002-7047-3730 · Ronan-Hix

University of Maryland, Oak Ridge National Lab

Josh Borrow
 0000-0002-1327-1921 · jborrow

Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

Bili Dong
 0000-0001-5081-9039 · qobilidop

Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego

Ole Streicher
 0000-0001-7751-1843 · olebole

Leibniz Institute for Astrophysics Potsdam (AIP)

Stuart Mumford
 0000-0003-4217-4642 · Cadair

Aperio Software Ltd, UK

Benjamin Keller
 0000-0002-9642-7193 · bwkeller

Department of Physics and Materials Science, University of Memphis

Benjamin Thompson
 0000-0003-4383-9183 · cosmosquark

Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK; Institute for

Computational Astrophysics, Dept of Astronomy & Physics, Saint Mary’s University, Halifax, BH3 3C3, Canada · Funded

by STFC PhD Studentship programme (ST/F007701/1)

Philipp Grete
 0000-0003-3555-9886 · pgrete

University of Hamburg · Funded by European Union’s Horizon 2020 (Marie Skłodowska-Curie grant agreement No

101030214)

John H. Wise
 0000-0003-1173-8847 · jwise77

Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA · Funded

by NASA Grants 80NSSC20K0520, 80NSSC21K1053; NSF Grants OAC-1835213, AST-2108020

Shin-Rong Tsai
 0000-0003-4635-6259 · cindytsai

Department of Physics, National Taiwan University; School of Information Sciences, University of Illinois at Urbana-

Champaign

https://orcid.org/0000-0002-9397-6189
https://github.com/jnaiman
https://orcid.org/0000-0002-7047-3730
https://github.com/Ronan-Hix
https://orcid.org/0000-0002-1327-1921
https://github.com/jborrow
https://orcid.org/0000-0001-5081-9039
https://github.com/qobilidop
https://orcid.org/0000-0001-7751-1843
https://github.com/olebole
https://orcid.org/0000-0003-4217-4642
https://github.com/Cadair
https://orcid.org/0000-0002-9642-7193
https://github.com/bwkeller
https://orcid.org/0000-0003-4383-9183
https://github.com/cosmosquark
https://orcid.org/0000-0003-3555-9886
https://github.com/pgrete
https://orcid.org/0000-0003-1173-8847
https://github.com/jwise77
https://orcid.org/0000-0003-4635-6259
https://github.com/cindytsai

Nastasha Anna Wijers
 0000-0001-6374-7185 · nastasha-w

CIERA and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave, Evanston, IL 60201,

USA · Funded by CIERA Postdoctoral Fellowship

Add Yourself
 XXXX-XXXX-XXXX-XXXX · yournamehere

Your University · Funded by Grant XXXXXXXX

✉ — Correspondence possible via GitHub Issues or email to Matthew Turk <mjturk@illinois.edu>.

https://orcid.org/0000-0001-6374-7185
https://github.com/nastasha-w
https://orcid.org/XXXX-XXXX-XXXX-XXXX
https://github.com/yournamehere
https://github.com/yt-project/yt-4.0-paper/issues

Abstract

We present the current version of the yt software package. yt is an open-source, community-
developed platform for analysis of volumetric data, with readers for several dozen data formats,
indexing systems for gridded data, adaptive mesh re�nement data, unstructured mesh data, discrete
and particle formats, and octree-based data, as well as the combination of these. We describe the
systems implemented in yt to facilitate a “science-�rst” approach to data analysis, wherein the
emphasis is on the meaning and interpretation of the data as opposed to its discretization or layout.

Authorship Policy

We note that the author list for this paper is, by design, extensive. We have separated the authors into
those that contributed to the text (whose names are ordered somehow TBD) and those that are
members of the yt community. The authors from each group have been indicated in the respective
author a�liations.

This paper was developed collaboratively, using the Manubot [1] system for collaborating on and
reviewing contributed text.

To add yourself to the author list, please follow the instructions in our README.

Introduction

The process of transforming data into understanding constitutes the vast majority of time, energy,
and intellectual e�ort spent during scienti�c inquiry. This is true across domains, whether data is the
product of a computational simulation, a telescope observation, the synthesis of sensors distributed
across the Earth, or a collection of images of the human brain. Data, by themselves, do not re�ect an
understanding of the Universe or its underlying physical properties; rather, they are recordings, or
measurements, of the state of systems as observed. Even for computational simulations, such as
simulations of star formation in the galaxy, this is true: these simulations encode information about a
discretization of a model, rather than the model itself.

Bridging the gap between this discretization and the physical understanding requires accessing data,
manipulating and interrogating this data, and then applying to this data a sense of understanding.
Somehow, bits stored on a disk must become, in our minds, a galaxy undergoing a starburst.

This process is both mediated and impeded by computational tools. When those tools align with our
mental model of how data exists, they can allow us to work more e�ciently, asking questions of data
and building sophisticated scienti�c inquiry. However, when they do not, they can cause frustration,
delays, and most worryingly, incorrect or misinterpreted results. When viewing this from the
perspective of the landscape of inquiry, the most startling realization is that the questions a
computational tool enables individuals to ask shapes the questions they think to ask.

In [2], the analysis platform yt was described. At the time, yt was focused on analyzing and
visualizing the output of grid-based adaptive mesh re�nement hydrodynamic simulations; while these
were used to study many di�erent physical phenomena, they all were laid out in roughly the same
way, in rectilinear meshes of data. In this paper, we present the current version of yt , which enables
identical scripts to analyze and visualize data stored as rectilinear grids as before, but additionally
particle or discrete data, octree-based data, and data stored as unstructured meshes. This has been

https://github.com/yt-project/yt-4.0-paper/blob/master/README.md#authorship-policy

the result of a large-scale e�ort to rewrite the underlying machinery within yt for accessing data,
indexing that data, and providing it in e�cient ways to higher-level routines, as discussed in Section
Something. While this was underway, yt has also been considerably reinstrumented with metadata-
aware array infrastructure, the volume rendering infrastructure has been rewritten to be more user-
friendly and capable, and support for non-Cartesian geometries has been added.

The single biggest update/addition to yt since that paper was published has not been technical in
nature. In the intervening years, a directed and intense community-building e�ort has resulted in the
contributions from over a hundred di�erent individuals, many of them early-stage researchers, and a
thriving community of both users and developers. This is the crowning achievement of development,
as we have attempted to build yt into a tool that enables inquiry from a technical level as well as
fosters a supportive, friendly community of individuals engaged in self-directed inquiry.

Community Building

Choosing a software package for a particular purpose involves evaluating several di�erentiating
factors; these factors include the functionality of a package, the performance of a package, the user-
friendliness, and even the ability of an individual to �nd help, engage with others and feel a sense of
participation [3]. The development, fostering and design of the community around yt is deemed to
be both crucial to the success or failure of yt , and in many ways inseparable from its functionality.

Composition

There are several rough categories of individuals engaged in development and utilization of yt . As a
result of its API-�rst design, there are few if any individuals who use yt that do not do so through the
scripting interface; this means that the vast (if not exclusive) majority of individuals who interact with
the functionality in yt are doing so by writing their own scripts, modules, and code, and arguably
engaging in a value-added development process of their own. The majority of individuals using yt at
present are in astronomy and astrophysics, typically �elds of simulation, although representatives
from other domains are increasingly participating in development and using yt for their own domain-
speci�c problems

Making the distinction somewhat more clearly, there are individuals who have built their own scripts
and utilized them as well as individuals who have contributed changes or modules to the primary yt
codebase. In addition, there is an emerging set of projects that build on yt as infrastructure to
conduct scienti�c analysis. These developers are largely driven by their own pragmatic scienti�c
needs, and they constitute the majority of developers (by number) that contribute to the code base.
The majority of these individuals are early- to mid-career researchers, typically graduate students,
postdocs, and assistant professors.

In recent years, there has emerged a more coherent contingency of individuals who participate in
both pragmatically-focused development of modules and functionality for their own bene�t as well as
modules or overall improvement that is supplemental or even external to their own research agenda.
Sections of the code base receiving such improvements include unit handling, plotting code,
infrastructure for loading disparate datasets, and so on. At this time we do not know of any
individuals funded to work on yt completely independent of a scienti�c or scholarly goal.

The composition of the community, particularly with a mixture of timelines for goal-setting and
completion, can at times cause frustrations and di�culties. For instance, the response to “Can this
feature be implemented?” often includes an invitation for the questioner to collaborate on developing
that feature and submitting it to the codebase. Developing a schedule of releases is an act of

consensus building, both deciding what bugs are critical to �x in the timeline of a release as well as
building consensus on what features should be considered blockers for a new release. The
intersection of this with academic deadlines (for instance job application season) requires balance and
care.

Types of Tasks

When evaluating the level of engagement, we consider a few di�erent classi�cations of tasks that are
performed by individuals in the community, and evaluate these based on how they �ow into greater
engagement.

Filing issues
Participating in mailing list discussions
Issuing a pull request
Writing documentation
Participating in code review
Closing bug reports
Drafting an enhancement proposal

While there are other activities that individuals can participate in, these are the typical activities we
see among participants in the community. The order, �owing from the �rst to the last, is the typical
�ow we see for an individual coming to participate in the community. The �rst step is typically to �le
an issue or bug report (occasionally these are requests for new features), followed by participating in
development-focused discussion on mailing lists. The next level of engagement typically involves the
development of a new piece of functionality, re�nement of existing code, or issuing a �x for a bug or
issue. These take the form of pull requests (described in greater detail here) that can be reviewed and
added to the code base.

The next level of engagement centers around tasks that are not fully-aligned with pragmatic, code-
driven scienti�c inquiry. The development of documentation is often viewed as orthogonal to the
scienti�c process, and typically requires an iterative writing process. Participation in code review,
providing comments, feedback and suggestions to other authors, is another somewhat orthogonal
task; it doesn’t necessarily directly bene�t the developer doing the reviewing (although it might) and it
does not necessarily result in academic rewards (citations, authorship, etc). But, it does arise from a
pragmatic (ensuring code reliability) or altruistic (the public good of the software) motivation, and is
thus a deeper level of engagement.

The �nal two activities, drafting enhancement proposals and closing bug reports, are the most
engaged, and often the most removed from the academic motivation structure. Developing an
enhancement proposal for yt means iterating with other developers on the motivation behind and
implementation of a large piece of functionality; it requires both motivation to engage with the
community and the patience to build consensus among stakeholders. Closing bug reports – and the
development work associated with identifying, tracking and �xing bugs – requires patience and often
repeated engagement with stakeholders.

Engagement Metrics

We include here plots of the level of engagement on mailing list discussions and the citation count of
the original method paper.

Project Governance

Between the publication of the �rst paper and this paper, the yt project instituted a form of
governance involving a steering committee, a set of “members” of the project, and a de�ned process
for developing improvements and enhancements (the YTEP, or yt -enhancement-proposal process).
YTEPs are discussed in 1.4.6. The systems developed account for a number of important procedures,
mostly related to decision-making, but do not address pressing community needs such as community
standards for conduct, changes in committee composition, sub-project coordination, or the transition
of members and developers to “emeritus” status.

This governance structure, however, serves as a process for the yt project, rather than just the
software itself. Much like other software projects with community-building as core goals, the yt
project encompasses the core package itself (largely the subject of this paper), a�liated software
projects (such as [4]) but also, crucially, the broader community and the spaces in which discussions,
tutorials, inquiries and development take place. As such, the governance structure was designed to be
more holistic than addressing so-called “Commit Privileges” and access control.

There are several components of the yt governance structure that we highlight here, but direct the
interested reader to our governance source repository for a more detailed understanding.

Con�icts of Interest

yt project development is distributed across universities and organizations, where in some cases
di�erent members of the development team may �nd themselves collaborating, or even applying for
similar funding or academic positions. To minimize real or perceived con�icts of interest among the
community, a policy regarding con�icts of interest is applied to members of the yt steering
committee.

It is expected that the Steering Committee Members will be employed at a wide range of
companies, universities and non-pro�t organizations. Because of this, it is possible that Members
will have con�ict of interests. Such con�ict of interests include, but are not limited to:

Financial interests, such as investments, employment or contracting work, outside of The
Project that may in�uence their work on The Project.
Access to proprietary information of their employer that could potentially leak into their work
with the Project.

All members of the Steering Committee shall disclose to the rest of the Council any con�ict of
interest they may have. Members with a con�ict of interest in a particular issue may participate in
Committee discussions on that issue, but must recuse themselves from voting on the issue.

This also addresses the possibility of funded work con�icting with the development of yt as a whole,
or project wellness. As of the time of writing, this policy has not been exercised, but providing it in
writing will ensure that the conduct of the steering committee is appropriate.

Project Members and Groups

Individuals interact with projects in di�erent ways at di�erent times; as careers progress and personal
lives shift, the degree of engagement that one can expect will change as well. To re�ect this, as well as
to codify the di�erent means by which people can participate in the community, the yt governance
structure allows for “members” to transition between di�erent levels of activity.

The base level of “membership” in the yt project is that of “project members.” This is, by design, a
broad category of individuals who have demonstrated their willingness to participate in the

https://github.com/yt-project/governance

community, either through participating in community discussions, helping other members,
contributing code or documentation, or reviewing the contributions of others. The initial seed of the
project members was chosen by a �at cuto� of 50 changesets included in the repository; since that
time, members are nominated by other members and must receive at least three positive votes. This
membership, unless either explicitly revoked (via �ve supporting member votes and a steering council
vote) lasts for life, although may be transitioned into “emeritus” status. Within the “members” group, a
set of several sub-groups are identi�ed that follow a rough, orchard-like metaphor.

The �rst of these groups is the fertilizer group. (We whimsically note that the choice of name is not
meant as a value judgment!) This is the high-level organizer group, including the steering committee
and any other leadership roles. This group tends to the growth of the community, ensuring that there
are opportunities for new members, and that the project continues as expected. Explicitly identi�ed in
the governance structure is that this is a group meant to train new members and to facilitate its
membership to grow and change over time.

The arboretum is the largest group, and is the starting point for new members of the project. The
arboretum includes all project members and steering committee members. This group facilitates and
develops contributions to the code base, encouraging diversity of participation.

The greenhouse group includes those new members of the project, who are still developing their
participation but have contributed to the community (for instance with a bug �x or documentation
enhancement.) Members of the greenhouse group do not necessarily have high-level project
responsibilities, but are encouraged to seek involvement and participate in triage meetings and other
discussions.

In recognition that temporary obligations, changes in activity level and other interest migrations
happen, there is a group entitled the fallow �elds for members who wish to temporarily step back
from their responsibilities. Many di�erent reasons exist for stepping into the fallow �elds – burnout,
new or enhanced work responsibilities, family or care duties, or even simply a desire to do other
things. Transitioning to the fallow �elds is not permanent, and participation in the project can either
resume or the individual can choose to move on.

Finally, we have designated a class of project members as emeritus (the only non-orchard name
utilized!) for individuals who have moved on to other interests or activities. The yt project has had a
number of individuals and contributors who have later gone on to work in industry or non-pro�ts, or
who simply have opted to leave the community. The emeritus designation is a manner by which their
previous contributions can still be recognized and honored, while also recognizing that they are no
longer active participants.

Decision Making

The majority of decisions in the yt project are small, day-to-day decisions about code quality, merging
pull requests, how to respond to questions and other items for which it is typically quite easy to
identify a consensus. For those situations where consensus is not possible, deciding upon and
implementing a course of action can be one of the more di�cult issues in a project; members of the
community each bring their own preferences, requirements, needs and desires to a project. These
decisions might be regarding the future of speci�c areas of the project’s code base – for instance,
“should the software volume rendering be split into a separate repository?” or “how should we decide
the line to draw for excising old frontends?” Typically, the YTEP process is su�cient, even in cases
where a consensus cannot be reached, as it allows a large amount of discussion. In cases where it
cannot, the decision making process utilizes a multi-tier system of votes, including the YTEP and
mailing list as venues. If a 2/3 majority is unable to be reached, the steering committee is allowed

approximately a month to identify a consensus among themselves; failing this, a majority vote will be
reached.

While the full mechanism of the yt project decision making process has not been exercised in its
entirety, its presence has provided a “safety net” for discussion. For further details, the voting process
section of the governance documents lay out the steps, involved groups and timeline.

Development Procedure

yt is developed openly. During the Spring of 2017, development transitioned from occurring on
Bitbucket to GitHub, and the source code management system was changed from Mercurial to git.
Development occurs through the “pull request” model, wherein changes to the codebase are made
and then requested to be included in the primary repository. Typically, there are two branches of
development, and occasionally three. The �rst of these is the “stable” branch, which is much slower-
paced, and typically only modi�ed during the release periods. The second is that of “main” (formerly
“master”, which is the conventional term in git terminology, and renamed in early 2021; the
corresponding mercurial term would be “default”) which is where current development takes place.
The “main” branch is meant to be for development proceeding that does not drastically disrupt usage
patterns. Occasionally, such as during the development of yt 4.0, a third branch is included in the
primary repository. This development branch is open for large and potentially disruptive changes, but
in order to centralize code review and developer attention it takes place there. For instance, during
the development of yt 4.0, the branch yt-4.0 was where the global mesh was removed and where
the units subsystem was removed and replaced with unyt .

This three-pronged approach generally has suited the community; the process of backporting changes
from the “main” branch to the “stable” branch can be time-consuming. However, balancing the needs
of a community requiring stable methods for analyzing data against the ease of development
suggests that this is a toll worth paying.

In general, the development of yt is reasonably top-heavy, with the majority of contributions coming
from a core group of individuals. We discuss the implications of this on sustainability in Section 1.19,
and provide here a graph of the contributions over time. Of particular note is that the development
history of yt is also highly bifurcated between version control systems and developer practice. In the
past, yt developers tended to commit frequently and include all of the individual development history
of individual features or bug �xes. Recent practice, however, is more inclined toward commit
“squashing,” where multiple commits are combined into a single commit with the same net e�ect, or
commit rebasing, where changes are included linearly rather than through a branched history. One
result of this is in �gures such as the top row of Figure 1, some contributors appear to have made a
smaller quantity of contributions than an informed observer would recognize. Speci�cally, this applies
to Clément Robert, who has contributed a considerable amount of change to the code base but has
done so in a way that does not maximize the “statistics” presented below. This particular bias, toward
contributions measured in count, is one that a�ects other members of the community as well,
especially those whose participation is through community engagement, documentation, tutorials,
and mentoring, rather than through direct modi�cations of the code base. To mitigate this
shortcoming, we present the number of pull requests merged into the code base, as a function of
time, as well as the time between their creation and their merge, in the lower row of Figure 1. This
demonstrates that in many cases, the number of discrete contributions to the codebase varies greatly
depending on the developer, and we believe gives a more informed perception of the activity in the
code base.

Figure 1: Commits and pull requests to the source code as a function of time.

https://yt-project.github.io/governance/voting.html
https://yt-project.github.io/governance/
https://bitbucket.org/yt_analysis/
https://github.com/yt-project/
https://www.mercurial-scm.org/
https://git-scm.org/

In Figure 2 we have plotted distribution of pull requests based on the time between their creation and
their merge. The longest time between opening a pull request and merging it was nearly four years;
this was the addition of the cf_radial frontend, which occurred in �ts and starts over a very long
period of time. The next longest pull request durations are for splitting the code used for bitmap
indexing (see 1.9) and a per-�eld con�guration system. This includes only those pull requests that
occurred on GitHub.

Figure 2: The distribution of pull requests as a function of how long it took to close them.

Unit Testing

The yt codebase includes a number of unit tests; although extensive, their existence post-dates the
initial development of the code, and they largely work around the extant APIs at the time of their
creation. Most modern recommendations for developing scienti�c software emphasize isolated
components, well-structured interfaces, and few side e�ects. While the development process
attempts to emphasize development of isolated APIs and well-constrained unit tests, the balance
struck between enabling contribution from junior developers and ensuring the (subjective) standards
of the code base does not always fall on the side of rigid design.

Many of the yt APIs that are tested require the existence of a “dataset.” For instance, the testing of
whether objects are correctly selected by a sphere selector (which absolutely could be tested in
isolation, were the APIs more separable) is done via creating several di�erent sets of mock datasets of
di�erent organizations and shapes and testing whether or not they correctly choose the data points
to be included. To support these operations, the yt testing utilities provide helper functions for
creating mock datasets that have di�erent geometric con�gurations and di�erent collections of
“�elds” included in their set of primitive values. Many of the tests are parameterized against the types
and organizations of the datasets, the decomposition across mock processors, and the underlying
values of the �elds. This ensures that we check against errors and bugs that may depend on behavior
that varies as the number of processors or the organization of the data changes. One example of this
would be in the selection of grid values for a single grid of size . The values selected in this should
match the values selected in the same grid decomposed into eight sets of cells, or 64 sets of
cells.

The mechanism by which �elds are tested is somewhat more extensive, touching on two di�erent
needs. The �rst need is that of accuracy – �elds with known answers, or �elds that can be written to
be decomposed into primitive, non-optimized operations, are tested for correctness. The second need
is that of dependency calculation; all �elds should have their dependencies correctly detected. For
example, if a dataset has primitive �elds for “mass” and “velocity,” the calculation of momentum
should require both. If the dataset includes a “momentum” �eld, then that should be detected as well.
This dependency calculation enables yt to consolidate IO tasks and read as much data as possible in
each pass over the full dataset. In addition to this, �elds are tested to ensure that the values
generated for them are independent of the organization of the dataset. Like in the example above,
the “momentum” �eld for a �xed set of values should be identical regardless of the decomposition of
the individual cell elements.

Wherever possible, analytical solutions are preferred. For processes like surface extraction, this might
include ensuring that �xed radii extraction produce the correct spherical region. For streamlines, it
might include computing the analytical solution to an integration along a known vector �eld. And for
projections, it would mean that integrating the path with a weight of “one” should result in a uniform
set of values equal to the path length across the domain.

1283

643 323

At present, the unit tests in yt take a considerable amount of time to run, and are using the
nosetests framework. Modern Python practice is to use the newer pytest framework, and e�orts are
underway to port yt to utilize pytest, and in the process, attempt to reduce overall runtime.

Answer Testing

The most time-consuming part of the testing process is what we refer to as “answer testing.” Because
so much of yt is focused on computing analysis results, and because some of these analysis results
simultaneously depend on speci�c IO routines, selection routines, and many “frontend-speci�c” pieces
of code, we have built a system for ensuring that for a given set of analysis operations, the result of a
set of operations does not change beyond a �xed (typically quite small) tolerance.

In general, we allow three di�erent classes of answers, against which we compare results from the
current version of the code:

1. Data values which should not ever change unless an explicit decision is made (i.e., raw data values
accessed from on-disk �elds)

2. Lightly-processed data values which we do not anticipate any deviation from exact, ordered values
(i.e., averages, extrema, etc.)

3. Higher-level processed values which may di�erently accumulate error across platforms and
architectures but are still within �ne-grained () tolerance (i.e., images, pixelized projections,
etc.)

In the �rst case, we can utilize hashing functions (such as MD5 and SHA) to guarantee consistency
across executions. Typically, however, we store the full set of values to facilitate easy comparison. In
the latter two cases, we apply unit-aware relative tolerances. This allows for changes in unit
assignment to be isolated from changes in value, and furthermore allows minor migration of values. A
recent incident in which these tests needed to be changed resulted from minor di�erences as a result
of consolidating operations within a loop to conserve memory; the code in question was converted to
Cython and the drift was on the scale of .

For small-scale answer tests, results are stored in a separate repository that is cloned as a
subrepository of the principle yt repository. When a new set of answers are needed, they are
submitted via pull request, and the changeset hash used for answer validation is updated in the main
repository. This allows a di�erent cadence, and also enables individuals not interested in updating
answer values to avoid cloning the subrepository and its full history. Larger dataset answers are
stored in on our continuous integration servers; a YAML �le in the main yt repository stores the
current version number for those answers, which is incremented (via a pull request) when needed.
Requiring this clear decision-making process allows for both collaborative discussion and community
governance over the degree of answer drift allowed.

Code Review

Code review in yt is conducted on a line-by-line basis, as well as on a higher-level regarding pull
requests. The work�ow for code review roughly follows this outline:

1. A pull request is issued. When a new pull request is issued, a template is provided that includes a
description of the change, requesting information about its compliance with coding standards, etc.

2. The pull request is automatically marked as unmergeable until a team member applies the correct
component label.

3. Code is reviewed, line-by-line, and suggestions are made by humans. Code linting, where speci�c
behaviors are identi�ed (such as inconsistent naming, unused variables, unreachable code

≡ 10−7

10−10

sections, etc) is automated.
4. This process is iterated, ensuring that tests, results accuracy and coding standards are maintained.

One increasing issue with the code review process is ensuring that changes are reviewed with
appropriate urgency; larger pull requests tend to languish without review, as the requirements for
review necessarily add burden to the maintainers. “Bug�x” changes formally require only one
reviewer, whereas the yt guidelines suggest that larger changes require review from two di�erent
team members.

One of the most pressing bottlenecks with code review is that the time it takes for tests to pass is
much longer than the typical time span during which code review takes place. Because tests are often
required to be run on the current version of the code, not the version of the code against which the
pull request has been issued, they are often re-initiated following a merge. This results in a pull
request being merged, and then whatever pull request is next to be reviewed has to wait until the
tests (now updated with the newly accepted pull request) pass. To alleviate this, we have recently
begun utilizing the “auto-merge” feature provided by GitHub. This allows a maintainer to mark a pull
request as “queued” to be merged once a set of requirements – such as tests passing, approval
messages, comment resolution and so forth – are met. By queuing up pull requests for merging, it
allows maintainers to mark a set of pull requests as ready to be merged, and then when they meet
the appropriate (automated and asynchronous) criteria, they will be merged.

Code Styling and Linting

For code included in yt , a set of styles are enforced. The term “linting” is used to describe applying
automated checks to enforce sytlistic consistency, as well as to �ag potential errors that can be
detected through static analysis of the code.

We rely on the pre-commit framework, which enables automated checks as well as automatic �xes
at commit time. This tool is an opt-in so not every “drive-by” contributor has to learn and install it, but
continuous linting is provided by pre-commit.ci so styling errors cannot slip in.

We con�gure pre-commit to run a mixture of formatters and static checkers. The former modify the
code in place, while the latter only report errors and so-called “code smells” (such as unde�ned
variables, unused imports, bare except statements…) but require human developers �x them.

Our suite of formatter most prominently includes black , isort and pyupgrade . black has
been designed to maximize readability with as few free parameters as possible (In many ways, the fact
that most of the yt code developers did not utilize this style before it was enforced likely enabled its
uptake, as it was seen as a choice that “made everyone compromise.”), while isort ensures that all
import statements are sorted (according to alphabetical order within a �rst/second/third-party

categorization), and pyupgrade modernizes some Python idioms according to our minimal support
version of the language. In particular, pyupgrade enforces the usage of modern Python “f-strings”
since we do not support Python version older than 3.6.

For static code analysis we rely on the flake8 framework. E�ort is underway to enable using mypy
for the specialized task of type checking.

All changes that can be applied via automation (speci�cally, code formatting) are accessible from
within the GitHub pull request interface, and are again provided by pre-commit.ci. This allows drive-by
contributions to have their pull requests updated inline by an automated process, reducing the need
to manually install packages to apply the changes.

https://github.blog/changelog/2021-02-04-pull-request-auto-merge-is-now-generally-available/
https://pre-commit.com/
https://pre-commit.ci/
https://black.readthedocs.io/en/stable/
https://pycqa.github.io/isort/
https://github.com/asottile/pyupgrade
https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
https://flake8.pycqa.org/en/latest/
https://pre-commit.ci/

We note that in [5] evidence is presented that code review bots can lead to a reduction in rejected pull
requests, as well as decreased communication among developers. While yt is not necessarily the
perfect laboratory for this, as the project as a whole does not have an extensive history of declining
pull requests, we have anecdotally noted that discussion around ‘code nits’ and stylistic issues has
been considerably reduced, leading to what developers describe as expedited pull requests.

Type Hinting

Code included in yt is not required to utilize type hinting. However, new contributions are allowed to
include type hinting, and work is underway to develop an ontology of types as well as a base set of
utilities and types that would be used both internally, and possibly be made available to external
package developers.

YTEP Process

YTEPs, or “ yt -enhancement proposal” are vehicles for collaborative decision-making in the project.
During periods of rapid development, the needs of the community for stability have to be balanced
against desires for change; the YTEP process was implemented to facilitate stakeholder feedback,
allow for discussion of design decisions, and to prompt detailed thinking about how and why things
should be implemented. We have modeled this process against that used in the AstroPy community
(“APE”). To create a new proposal for a large change to yt , or to document a decision-making
process, individuals prepare a description of the background, motivation for the change, the steps to
implementation, and potential alternative approaches. The proposal is discussed through the pull-
request process, and once discussion has concluded it is added to the repository of YTEPs that is auto-
built and deployed.

Implemented shortly after the �rst paper on yt was released, the YTEP process experienced a fairly
pronounced period of usage during the transition between versions 2.0 and 3.0 of yt , and has since
been utilized considerably less. The accepted YTEPs have included implementing the chunking system,
developing a units system, removing legacy components, and implementing a code of conduct. Below,
we include a table of current YTEPs as of this writing.

Number YTEP Title Created Authors

0001 IO Chunking
November
26, 2012

Matthew Turk

0002 Pro�le Plotter
December
5, 2012

Matthew Turk

0003 Standardizing �eld names
December
11, 2012

Casey Stark, Nathan Goldbaum, Matthew Turk

0005 Octrees for Fluids and Particles
December
24, 2012

Matthew Turk

0006 Periodicity
January 10,
2013

Matthew Turk, Nathan Goldbaum

0007 Automatic Pull Requests’ validation
February
21, 2013

Kacper Kowalik

0008 Release Schedule
February
21, 2013

Matthew Turk

0009 AMRKDTree for Data Sources
February
28, 2012

Sam Skillman

https://docs.python.org/3/library/typing.html
https://github.com/yt-project/ytep
https://ytep.readthedocs.org/

Number YTEP Title Created Authors

0010
Refactoring for Volume Rendering and
Movie Generation

March 3,
2013

Cameron Hummels

0011 Symbol units in yt
March 7,
2013

Nathan Goldbaum, Casey Stark, Anna Rosen,
Matthew Turk

0012 Halo Redesign
March 7,
2013

Britton Smith, Cameron Hummels, Chris Moody,
Mark Richardson, Yu Lu

0013 Deposited Particle Fields
April 25,
2013

Chris Moody, Matthew Turk, Britton Smith, Doug
Rudd, Sam Leitner

0014 Field Filters
July 2nd,
2013

Matthew Turk

0015 Transfer Function Refactor
August 13,
2013

Sam Skillman

0016 Volume Traversal
September
10, 2013

Matthew Turk

0017 Domain-Speci�c Output Types
September
18, 2013

Matthew Turk and Anthony Scopatz

0018
Changing dict-like access to Static
Output

September
18, 2013

Matthew Turk

0019 Reduce items in main import
October 2,
2013

Matthew Turk

0020 Removing PlotCollection
March 18,
2014

Matthew Turk

0021 Particle-Only Plots
August 29,
2014

Andrew Myers

0022 Benchmarks
January 19,
2015

Matthew Turk

0023 yt Community Code of Conduct
July 11,
2015

Britton Smith

0024 Alternative Smoothing Kernels
August 1,
2015

Bili Dong

0025 The ytdata Frontend
August 31,
2015

Britton Smith

0026 NumPy-like Operations
September
21, 2015

Matthew Turk

0027 Non-Spatial Data
December
1, 2015

Matthew Turk, Nathan Goldbaum, John ZuHone

0028 Alternative Unit Systems
December
8, 2015

John ZuHone, Nathan Goldbaum, Matthew Turk

0029 Extension Packages
January 25,
2016

Matthew Turk

0031 Unstructured Mesh
December
18, 2014

Matthew Turk

0032
Removing the global octree mesh for
particle data

February 9
2017

Nathan Goldbaum, Meagan Lang, Matthew Turk

0033 Dropping Python2 Support
November
28, 2017

Nathan Goldbaum

Number YTEP Title Created Authors

0034 yt FITS Image Standard
September
9, 2018

John ZuHone

0036 Migrating from nose to pytest
September
30, 2019

Jared Coughlin

0037 Code Styling
May 18,
2020

Clément Robert

1000 GitHub Migration
March 25,
2017

Lots of folks

1776 Team Infrastructure
August 24,
2014

Britton Smith

3000 Let’s all start using yt 3.0!
October 30,
2013

Matthew Turk

Indexing and Geometry

yt is designed for analysis and visualization of datasets that describe “natural” or “physical”
phenomena; more generally, yt is designed to analyze data that can be characterized by a metric of
some type. The most common use case, by far, is that of data that is described in a Cartesian space,
by the orthogonal axes of x, y and z. However, for reasons related to naturalness of coordinate
systems and relevance to physical phenomena, datasets are also frequently organized in other
coordinate systems, such as cylindrical polar (, and), spherical (, and) and variants such as
geographic (latitude, longitude and altitude).

Importantly, however, yt distinguishes between the coordinate space a dataset describes and the
natural or index space by which its organization is described. This distinction is the most relevant
among datasets and data formats where the organization is implicit, rather than explicit; for instance,
in a grid patch dataset, data variable locations are often only speci�ed implicitly. For a grid volume
that covers a given region, the relationship between the “index” value of a cell (for instance,) and
its position in space (for instance, or) requires transformation between a logically-
Cartesian decomposition of the space and the potentially-non Cartesian space that it represents.

In Figure 3 we demonstrate one possible mapping. We note that the speci�c data layout is not
optimized for IO throughput, and is unlikely to be exactly replicated in real world formats. In this case,
the data points may be laid out sequentially on disk (or in memory) and a mapping function translates
these into position and extent in the coordinate system, here cylindrical coordinates. For instance,
there may be a cell that spans from 0.375 to 0.5 and from 45.0 to 52.5, which is de�ned by
the array values de�ned in cell 1, 4.

r z θ r θ ϕ

i, j, k
x, y, z r, θ,ϕ

r θ

Figure 3: Index space to coordinate space mapping. On the left is an example of how data points may be laid out on
disk and on the right is how these points might be translated into a (cylindrical) coordinate space.

Abstraction of Coordinate Systems

yt provides a system for de�ning relationships between index-space and coordinate-space. During
instantiation of a Dataset object, a helper object (coordinates , a subclass of
CoordinateHandler) is created. This helper object tracks the correspondence between numerical

axes and spatial axes (for instance, even in some Cartesian datasets, axis 0 corresponds to rather
than), the names of axes, and the transformation and pixelization methods for visualization. In
addition to these helper functions, the coordinate handler provides de�nitions for derived �elds that
describe local cell width (and orthogonal path length), positions in coordinate space as computed by
index space coordinates, volumes, and surface areas. These coordinate handlers also provide
transformations between di�erent spaces, albeit using the somewhat undesirable method of
conversion to reference cartesian frames and subsequent conversion to local coordinate frames.

At present, coordinate spaces are de�ned in the spaces enumerated in Table 1. While these are
representative of the most common spatial representations, additional representations (such as those
that include a non-trivial mapping between coordinates and index values) are possible to implement.

Table 1: Extant coordinate systems; in all cases, value ranges should be taken to describe extent rather than speci�c
boundary points.

Coordinate system Axes

Cartesian coordinates

Cylindrical polar coordinates

Spherical coordinates

Geographic coordinates latitude , longitude , altitude

Internal geographic coordinates latitude, longitude, depth

z
x

x, y, z

r, θ ∈ [0, 2π], z

r, θ,ϕ

∈ [0, 180] ∈ [0, 360]

Coordinate system Axes

Spectral cube Image , Image and

Future developments may involve code generation for arbitrary coordinate systems, using SymPy or
other libraries. Independent of the visualization methods (which can often be reused), the
development of coordinate systems is largely rote, applying straightforward mathematics to construct
derived �eld de�nitions. As such, using mechanisms in SymPy for construction of relationships
between coordinate systems may be a feasible method of developing code-generation for coordinate
system handlers in yt .

Data Objects

The basic principles by which yt operates are built on the notion of selecting data (through coarse
and subsequent �ne-grained indexing of data sources such as �les), accessing that data in a memory-
e�cient fashion, and then processing that data into either a resultant set of quantitative data or a
visualization.

Selections in yt are usually spatial in nature, although several non-spatial mechanisms focused on
queries can be utilized as well. These objects which conduct selection are selectors, and are designed
to provide as small of an API as possible, to enable ease of development and deployment of new
selectors.

Selectors require de�ning several functions, with the option of de�ning additional functions for
optimization, that return true or false whether a given point is or is not included in the selected
region. These functions include selection of a rectilinear grid (or any point within that grid), selection
of a point with zero extent and selection of a point with a non-zero spherical radius.

The base selector object utilizes these routines during a selection operation to maximize the amount
of code reused between particle, patch, and octree selection of data. These three types of data are
selected through speci�c routines designed to minimize the number of times that the selection
function must be called, as they can be quite expensive.

Selecting data from a grid is a two-step process. The �rst step is identifying which grids intersect a
given data selector; this is done through a sequence of bounding box intersection checks. Within a
given grid, the cells which are intersected are identi�ed. This results in the selection routine being
called once for each grid object in the simulation and once for each cell located within an intersecting
grid. This can be conducted hierarchically, but due to implementation details around how the grid
index is stored this is not yet cost e�ective.

Selecting data from an octree-organized dataset utilizes a recursive scheme that selects individual oct
nodes, then for each cell within that oct, determining which cells must be selected or child nodes
recursed into. This system is designed to allow for having leaf nodes of varying cells-per-side, for
instance 1, 2, 4, 8, etc. However, the number of nodes is �xed at 8, with subdivision always occurring
at the midplane.

The �nal mechanism by which data is selected is for discrete data points, typically particles in
astrophysical simulations. At present, this is done by �rst identifying which data �les intersect with a
given selector, then selecting individual points. There is no hierarchical data selection conducted in
this system, as we do not yet allow for re-ordering of data on disk or in-memory which would facilitate
hierarchical selection through the use of operations such as Morton indices.

x y ν

Selection Routines

Given these set of hierarchical selection methods, all of which are designed to provide opportunities
for early-termination, each geometric selector object is required to implement a small set of methods
to expose its functionality to the hierarchical selection process. Duplicative functions often result from
attempts to avoid expensive calculations that take into account boundary conditions such as
periodicity and re�ectivity unless necessary. Additionally, by providing some routines as options, we
can in some instances specialize them for the speci�c geometric operation.

select_cell(cell_center, cell_width) : this function, which is somewhat degenerate with
select_bbox , returns whether a given “cell,” de�ned by its center and its width along each

dimension, is included within the selection. In situations where the cells are spaced logarithmically,
rather than linearly, this may produce slightly reduced accuracy for near-misses and glancing-
selections.
select_point(position) : this function returns whether or not a point of zero-extent is

included within the selection. This has some degeneracy with select_sphere .
select_sphere(position, radius) : This is equivalent to the select_point function,

except that any point within the speci�ed radius is included within the selector object.
select_bbox(lower_left, upper_right) : Determine overlap with an axis-aligned bounding

box. Particularly for hierarchical selection methods, determining whether or not a bounding box
overlaps with a geometric selector can lead to early-termination of some selection operations.
select_bbox_edge(lower_left, upper_right) : This is a special-case of the bounding box

routine that provides information as to whether or not the entire bounding box is included or just a
partial portion of the bounding box.

We demonstrate a handful of selection operations on a low-resolution dataset below. In each of these
�gures, the rectangular regions outlined in gray and black indicate individual grid patches, where data
may vary in resolution and cell size. In Figure 4 we illustrate the selection of a rectangular prism (i.e., a
region , like in Section 1.6.2.17. In Figure 5, we illustrate the selection of a sphere (i.e., a sphere ,

like in Section 1.6.2.20. And, to demonstrate yt’s ability to construct boolean selectors from these
objects (i.e., Section 1.6.2.2 we show what the logical NOT of these two objects would produce in 6.
We note in particular that while these regions are constructed from geometric selections, the data
points are selected by the inclusion of their center points, leading to slightly irregular edges; this is by
design.

Figure 4: A selection of data in a low-resolution simulation from a rectangular prism.

Figure 5: A selection of data in a low-resolution simulation from a sphere.

Figure 6: The logical A AND NOT B for regions A and B from Figures 4 and 5 respectively.

Fast and Slow Paths

Given an ensemble of objects, the simplest way of testing for inclusion in a selector is to call the
operation select_cell on each individual object. Where the objects are organized in a regular
fashion, for instance a “grid” that contains many “cells,” we can apply both “�rst pass” and “second
pass” fast-path operations. The “�rst pass” checks whether or not the given ensemble of objects is
included, and only iterates inward if there is partial or total inclusion. The “second pass” fast pass is
specialized to both the organization of the objects and the selector itself, and is used to determine
whether either only a speci�c (and well-de�ned) subset of the objects is included or the entirety of
them.

For instance, we can examine the speci�c case of selecting grid cells within a rectangular prism. When
we select a “grid” of cells within a rectangular prism, we can have either total inclusion, partial
inclusion, or full exclusion. In the case of full inclusion, where the entire grid is included within the
selector, we simply sidestep the speci�c inclusion checks completely and return a full mask of cells to
utilize. In the case of partial inclusion, we can often determine the “start” and “end” indices of
inclusion in the rectangular prism by examining the intersection volume. This allows us to avoid many
costly individual select_cell calls.

With discrete point selection (and for our purposes, often unstructured mesh falls into this category)
we often do not have the same organizing principle on which we can rely. However, utilizing
hierarchical bitmap indexing we can often organize subsets of particles into collections of cells which
may or may not be contiguous. In this situation, we can check for full inclusion within data objects,

although we are not able to identify start and stop indices as the data are not assumed to be
organized spatially independent of how we have indexed them.

At present, the objects listed in Table 2 are provided as selectors in yt. We do make a distinction
between “selection” operations and “reduction” or “construction” operations (such as projections and
smoothing/resampling), but have included both here for consistency. Additionally, some have been
marked as not “user-facing,” in the sense that they are not expected to be constructed directly by
users, but instead are utilized internally for indexing purposes. In columns to the right, we provide
information as to whether there is an available “fast” path for grid objects.

Table 2: Selection objects and their types.

Object Name Object Type

Arbitrary grid Resampling

Boolean object Selection (Base Class)

Covering grid Resampling

Cut region Selection

Cutting plane Selection

Data collection Selection

Disk Selection

Ellipsoid Selection

Intersection Selection (Bool)

Octree Internal index

Orthogonal ray Selection

Particle projection Reduction

Point Selection

Quadtree projection Reduction

Ray Selection

Rectangular Prism Selection

Slice Selection

Smoothed covering grid Resampling

Sphere Selection

Streamline Selection

Surface Selection

Union Selection (Bool)

Arbitrary grid

Arguments:

Left edge
Right edge
Active Dimensions

A 3D region with arbitrary bounds and dimensions. In contrast to the Covering Grid, this object
accepts a left edge, a right edge, and dimensions. This allows it to be used for creating 3D particle
deposition �elds that are independent of the underlying mesh, whether that is yt-generated or from
the simulation data. For example, arbitrary boxes around particles can be drawn and particle
deposition �elds can be created. This object will refuse to generate any �uid �elds.

Bool

Arguments:

Operation
Data object 1
Data object 2

This is a boolean operation, accepting AND, OR, XOR, and NOT for combining multiple data objects.
This object is not designed to be created directly; it is designed to be created implicitly by using one of
the bitwise operations (&, |, ^, ~) on one or two other data objects. These correspond to the
appropriate boolean operations, and the resultant object can be nested.

Covering grid

Arguments:

Level
Left edge
Active Dimensions

A 3D region with all data extracted to a single, speci�ed resolution. Left edge should align with a cell
boundary, but defaults to the closest cell boundary.

Cut region

Arguments:

Base object
Conditionals

This is a data object designed to allow individuals to apply logical operations to �elds and �lter as a
result of those cuts.

Cutting

Arguments:

Normal
Center

This is a data object corresponding to an oblique slice through the simulation domain. This object is
typically accessed through the cutting object that hangs o� of index objects. A cutting plane is an
oblique plane through the data, de�ned by a normal vector and a coordinate. It attempts to guess an
‘north’ vector, which can be overridden, and then it pixelizes the appropriate data onto the plane
without interpolation.

Data collection

Arguments:

Object List

By selecting an arbitrary object_list, we can act on those grids. Child cells are not returned.

Disk

Arguments:

Center
Normal vector
Radius
Height

By providing a center, a normal, a radius and a height we can de�ne a cylinder of any proportion. Only
cells whose centers are within the cylinder will be selected.

Ellipsoid

Arguments:

Center
a
b
c
e0
tilt

By providing a center,A,B,C,e0,tilt we can de�ne a ellipsoid of any proportion. Only cells whose centers
are within the ellipsoid will be selected.

Intersection

Arguments:

Data objects

This is a more e�cient method of selecting the intersection of multiple data selection objects.
Creating one of these objects returns the intersection of all of the sub-objects; it is designed to be a
faster method than chaining & (“and”) operations to create a single, large intersection.

Minimal sphere

Arguments:

Center
Radius

Build the smallest sphere that encompasses a set of points.

Octree

Arguments:

Left edge
Right edge
Particle count re�nement criteria

A 3D region with all the data �lled into an octree. This container will mean deposit particle �elds onto
octs using a kernel and SPH smoothing.

Ortho ray

Arguments:

Axis
Coords

This is an orthogonal ray cast through the entire domain, at a speci�c coordinate. This object is
typically accessed through the ortho_ray object that hangs o� of index objects. The resulting arrays
have their dimensionality reduced to one, and an ordered list of points at an (x,y) tuple along axis
are available.

Particle proj

Arguments:

Axis
Field
Weight �eld

A projection operation optimized for SPH particle data.

Point

Arguments:

P

A 0-dimensional object de�ned by a single point

Quad proj

Arguments:

Axis
Field
Weight �eld

This is a data object corresponding to a line integral through the simulation domain. This object is
typically accessed through the proj object that hangs o� of index objects. YTQuadTreeProj is a
projection of a field along an axis . The �eld can have an associated weight_field , in which
case the values are multiplied by a weight before being summed, and then divided by the sum of that
weight; the two fundamental modes of operating are direct line integral (no weighting) and average
along a line of sight (weighting.) What makes proj di�erent from the standard projection
mechanism is that it utilizes a quadtree data structure, rather than the old mechanism for projections.
It will not run in parallel, but serial runs should be substantially faster. Note also that lines of sight are
integrated at every projected �nest-level cell.

Ray

Arguments:

Start point
End point

This is an arbitrarily-aligned ray cast through the entire domain, at a speci�c coordinate. This object is
typically accessed through the ray object that hangs o� of index objects. The resulting arrays have
their dimensionality reduced to one, and an ordered list of points at an (x,y) tuple along axis are
available, as is the t �eld, which corresponds to a unitless measurement along the ray from start to
end.

Region

Arguments:

Center
Left edge
Right edge

A 3D region of data with an arbitrary center. Takes an array of three left_edge coordinates, three
right_edge coordinates, and a center that can be anywhere in the domain. If the selected region
extends past the edges of the domain, no data will be found there, though the object’s left_edge
or right_edge are not modi�ed.

Slice

Arguments:

Axis
Coord

This is a data object corresponding to a slice through the simulation domain. This object is typically
accessed through the slice object that hangs o� of index objects. Slice is an orthogonal slice
through the data, taking all the points at the �nest resolution available and then indexing them. It is
more appropriately thought of as a slice ‘operator’ than an object, however, as its �eld and coordinate
can both change.

Smoothed covering grid

Arguments:

Level
Left edge
Active Dimensions

A 3D region with all data extracted and interpolated to a single, speci�ed resolution. (Identical to
covering_grid, except that it interpolates.) Smoothed covering grids start at level 0, interpolating to �ll
the region to level 1, replacing any cells actually covered by level 1 data, and then recursively
repeating this process until it reaches the speci�ed level .

Sphere

Arguments:

Center
Radius

A sphere of points de�ned by a center and a radius.

Streamline

Arguments:

Positions

This is a streamline, which is a set of points de�ned as being parallel to some vector �eld. This object
is typically accessed through the Streamlines.path function. The resulting arrays have their
dimensionality reduced to one, and an ordered list of points at an (x,y) tuple along axis are
available, as is the t �eld, which corresponds to a unitless measurement along the ray from start to
end.

Surface

Arguments:

Data source
Surface �eld
Field value

This surface object identi�es isocontours on a cell-by-cell basis, with no consideration of global
connectedness, and returns the vertices of the Triangles in that isocontour. This object simply returns
the vertices of all the triangles calculated by the marching cubes algorithm; for more complex
operations, such as identifying connected sets of cells above a given threshold, see the
extract_connected_sets function. This is more useful for calculating, for instance, total isocontour
area, or visualizing in an external program (such as MeshLab.) The object has the properties .vertices
and will sample values if a �eld is requested. The values are interpolated to the center of a given face.

Union

Arguments:

https://en.wikipedia.org/wiki/Marching_cubes
http://www.meshlab.net/

Data objects

This is a more e�cient method of selecting the union of multiple data selection objects. Creating one
of these objects returns the union of all of the sub-objects; it is designed to be a faster method than
chaining | (or) operations to create a single, large union.

Processing and Analysis of Data

yt provides several interfaces for accessing the data available in a given dataset. As described in 1.6,
the primary means of accessing data is through “data objects” that apply selections to the dataset.
These objects present dictionary-like interfaces that return data; below, we describe what options are
available for the data that is returned (1.7.1), as well as high-level interfaces for applying aggregations
and reductions (1.7.2).

Field System

In yt , there are three types of “�elds” that de�ne values at a given spatial location. The �rst of these
is an “on-disk” �eld, representing the raw, unmodi�ed (except potentially up-cast to 64 bit precision)
values read from the data storage that de�nes the dataset, such as �les or bucket storage; while yt
does provide routines for reading these �elds, they are passed largely unmodi�ed and so we do not
discuss them in depth. The second type of �eld is a “derived �eld,” which is a functional de�nition of
how to process or combine one or more �elds that exist in the dataset. Finally, providing the closure
necessary for these derived �elds to be accessed independently of their naming convention are “alias
�elds” that provide mappings between platform- or format-speci�c names for �elds and those used
internally in yt .

Fields are also de�ned by their “sampling type” to distinguish between those �elds de�ned in a
volume-�lling fashion (i.e., cell-based �elds) and those that are de�ned by discrete samples that may
or may not require closure or convolution functions to be applied. Fields that are de�ned as a
collection of discrete samples can be combined or �ltered di�erently than those that are de�ned in a
volume-�lling manner, as described in 1.7.1.3 and 1.7.1.4.

Field Aliases

Small di�erences in naming �elds can prove disproportionately challenging for writing platform-
neutral analysis code. For instance, if one platform names the “density” �eld dens and another refers
to it as Density (or, as we have seen in one platform, even the unicode character for) then any
platform-independent derived �eld that utilizes density must be de�ned multiple times to refer to this
fundamentally identical quantity. (An important note here is that in many cases, the reverse problem
is true – some codes may refer to things with the same name but with di�erent underlying de�nitions,
which provides an additional challenge to the analysis process by requiring disambiguation.)

To address this issue, yt de�nes a set of fundamental �elds, along with a naming convention for
extensibility, that are provided as “aliases” for the dataset-speci�c �eld names. This enables a
consistent ontology to be de�ned for �elds in yt , upon which the remainder of derived �elds can
rely. Typically these are de�ned by the authors of a given dataset format frontend, wherein a
translation or lookup table is provided to match the on-disk �elds to those expected by yt .

In some cases, it is through a combination of derived and aliased �elds that the full set of data is
made available to the researcher; for instance, some datasets do not store velocity as a quantity on
disk, but instead store momentum. In this case, momentum is aliased from the on-disk �eld to the

ρ

https://www.youtube.com/watch?v=WZLkcFns8Ks

yt �eld, and then a derived �eld is generated to seamlessly provide access to the velocity �eld
wherever it is needed.

Derived Fields

In addition to the �elds that are de�ned in the dataset, yt recognizes that there exist essentially
in�nite �elds in potentia that can be de�ned. For instance, commonly in astrophysics datasets the
“density” of di�erent elemental abundances are stored (which provides a natural conservation
scheme with the density) in the dataset. A simple derived �eld might be de�ned to provide the
“fraction” of a given �eld:

yt provides the ability to de�ne this as a derived �eld in a functional form. For instance, if the density
of helium is stored as the �eld-tuple ("gas", "helium_density") we can de�ne the function as:

Note that here, the argument field is a �eld de�nition object and data is a data object which we
are using for our selection. This is the form that derived �elds in yt take; these can be supplied to
the function add_field (or they can use derived_field as a decorator) and they will become
available for all data objects.

These �elds can accept parameters (associated with the base data object used for selection) and can
require that spatial information is made available to the derived �eld; this can enable the calculation
of �nite-di�erence stencils for operations such as averaging and operators such as the gradient.

Derived �elds are an extremely integral component of yt and are the gateway to enabling low-
memory overhead calculations and sharing of analysis code. In addition, yt includes a large number
of �elds available, many of which are dynamically constructed according to metadata available in the
dataset, to jump-start analysis. Researchers using yt can load a dataset and immediately compute,
for instance, the velocity divergence and yt will construct the appropriate �nite di�erent stencil, �ll
in any missing zones at the edge of individual boundaries, and return an array that can be accessed,
visualized or processed.

Particle Filters

Many of the data formats that yt accepts de�ne particles as mixtures of a single set of attributes
(such as position, velocity, etc) and then a “type” – for instance, intermingling dark matter particles
with “star” particles. Where simulations are concerned, this can produce much more e�cient code;
since particles are typically evolved in the same fashion, storing them adjacent in memory can
speedup operations such as time evolution steps. However, when reading the data in, they often need
to be handled in fundamentally di�erent ways. The analysis of dark matter particles in a galaxy, for
instance, needs to be conducted di�erently than the analysis of collisional particles, or particles that
arise from other phenomena (such as gas). yt provides a method for creating new “particle types” on
the �y and applying existing derived �elds to them. By adding a new “�lter” method, particles that
meet this criteria (“high-mass Black Holes,” for instance, or “star clusters more than 1 billion years
old”) are accessible in a new �eld tuple. This enables all existing memory-conservative operations to
act on them.

fX ≡
ρX

ρ

def _helium_fraction(field, data):
 return data["gas", "helium_density"] / data["gas", "density"]

This �lter, for example, checks and returns only those particles whose �eld particle_type is set to
a value of 2.

In this case, yt also infers the name of the newly �ltered type from the name of the function, and
they become stars. Now all existing operations will work on �eld-tuples beginning with "stars" as
their �eld type.

Particle Unions

The opposite operation to that in 1.7.1.3 is also accessible, by which multiple particle types can be
combined and viewed as a single logical type. For instance, if “star particles” and “black hole” particles
are distinct in a simulation of galaxy formation, they can be combined into a logical union:

Since unions are restricted to combinations in full of di�erent types, their creation requires only
speci�cation of the particle types to combine. The set of available �elds is the intersection of the �elds
available for all the combined types. If both particle types share �elds A and B but only one shares C,
the union will only have �elds A and B accessible to it.

Field Detection

yt determines at dataset instantiation time the �elds that are available to be computed. This
provides the ability for researchers to query what �elds are available, and additionally as a side-e�ect
it provides information to the yt IO routines which �elds need to be computed for a given derived
�eld. By utilizing this information, yt can “resolve” all required �elds when a derived �eld is
requested. As such, it is able to identify that ("gas", "velocity_divergence") relies on the
velocity �elds along each axis. If these are the �elds that exist in the dataset, the resolution process
concludes here. If, however, they need to be computed from the momentum and density �elds, those
become the �elds that are read from the dataset.

This resolution of �eld dependencies enables yt to read only the �elds that are necessary and to do
so in a single pass over a �le, reducing the initialization and seeking time within a �le. Particularly in
environments where metadata operations (required for an open system call) or seek operations
(where dataset chunks may need to be looked up within a �le as indexed by a header) are expensive,
this can have signi�cant impact on the overall performance, and by operating on a chunk-by-chunk
basis, it further reduces the need to store multiple �elds in memory simultaneously.

This computation does, however, come with an overhead. Detecting the �elds that are required (and
thus determining which �elds are available) can be expensive, as many small sympy objects are
created in the unit handling subsystem and many redundant calculations performed in the yt -
speci�c �eld resolution code. This is an area of great interest for future optimizations, as the current
situation bene�ts the access of large derived �elds over iteration over many small datasets. In

@yt.particle_filter(requires=["particle_type"], filtered_type="all")
def stars(pfilter, data):
 filter = data[(pfilter.filtered_type, "particle_type")] == 2
 return filter

u = ParticleUnion("massive_objects", ["bh", "stars"])
ds.add_particle_union(u)

particular, an enormous amount of time in the unit testing framework is spent detecting �elds for
datasets that are only used once and then discarded.

Array-like Operations

In yt , a newly-constructed data selector contains no data – this enables data selectors for large
regions, in extremely large datasets, to be lightweight and cheap to construct. By ensuring that these
objects don’t immediately consume resources, they can be manipulated and operated on in a high-
level fashion, without taxing the computational power. While these data objects can return the full set
of data they include, yt also provides array-like operations that do not require immediate access to
the full set of numerical values, and which align with the mental-model for data processing that yt
exposes. As an example, consider the following two operations:

and

Both are available in yt . As a side-e�ect of Python’s object model, the �rst will access the ("gas",
"density") item in the object dd , itself a concatenated numpy array, and then execute the max
method on it. The second will call the max method on the data object, supplying to it the name of the
�eld. This allows yt to decide how to decompose, parallelize and process the data in a memory-
e�cient way, and spread across multiple processors. Additionally, by emphasizing that the
“maximum” is being taken on the data object, rather than the numerical data, other operations can be
exposed that build on the underlying data organization. For instance, taking the maximum along a
given (spatial) axis:

This translates our meaning – �nd the maximum value along the z-axis – into a dimensionality
reduction operation that uses yt ’s built-in “projection” method. These operations, on data objects
(rather than the underlying arrays of values that are accessible through them) provide dataframe-like
methods for querying very large, spatially registered data.

The array-like operations utilized in yt attempt to map to conceptually similar operations in numpy.
Unlike numpy, however, these utilize yt ’s dataset-aware “chunking” operations, in a manner
philosophically similar to the chunking operations used in the parallel computation library dask.
Below, we outline the three classes of operations that are available, based on the type of their return
value.

Reduction to Scalars

Traditional array operations that map from an array to a scalar are accessible utilizing familiar syntax.
These include:

dd = ds.all_data()
dd["gas", "density"].max()

dd = ds.all_data()
dd.max(("gas", "density"))

sp = ds.sphere("center", (10.0, "m"))
sp.max(("gas", "temperature"), axis="z")

min(field_specification) , max(field_specification) , and
ptp(field_specification)
argmin(field_specification, axis) , and argmax(field_specification, axis)
mean(field_specification, weight) , std(field_specification, weight) , and
sum(field_specification)

In addition to the advantages of allowing the parallelism and memory management be handled by
yt , these operations are also able to accept multiple �elds. This allows multiple �elds to be queried

in a single pass over the data, rather than multiple passes. Additionally, the min and max operations
will automatically cache the results during a single pass, which means that calling max immediately
after min (and vice versa) on the same data object and �eld will not require a recomputation.

In the case of argmin and argmax , the default returned “axis” will be the spatial coordinates of the
minimum or maximum �eld value (respectively).
However, by specifying an axis or set of axes that correspond to �elds, the �eld values will be queried
at these minimum or maximum points. This allows, for instance, to query the value of “density” at the
minimum “temperature.” The operations mean and sum are available here in a non-spatial form,
where they simply compute the scalar reduction independent of the spatial registration of the
dataset.

Reduction to Vectors

profile(axes, fields, profile_specification)

The profile operation provides weighted or unweighted histogramming in one or two dimensions.
This function accepts the axes along which to compute the histogram as well as the �elds to compute,
and information about whether the binning should be an accumulation, an average, or a weighted
average. These operations are described in more detail in reference pro�le section.

Remapping Operations

mean(field_specification, weight, axis)
sum(field_specification, axis)
integrate(field_specification, weight, axis)

These functions map directly to di�erent methods used by the projection data object. Both mean and
sum , when supplied a spatial axis, will compute a dimensionally-reduced projection, remapped into a

pixel coordinate plane. Importantly, if the dataset is a �nite-volume dataset (grid, octree, etc), the
results of these operations will be a variable-resolution mesh, rather than a �xed resolution image
bu�er.

Abstracting Simulation Types

Chunking and Decomposition Strategies

Reading data, particularly data that will not be utilized in a computation, can incur substantial
overhead, particularly if the data is spread over multiple �les on a networked �lesystem, where
metadata queries can dominate the cost of IO. yt takes the approach of building a coarse-grained
index based on the discretization method of the data (particle, grid, octree, unstructured mesh),
combining this with datapoint-level indexing for selection processes.

To supplement this, methods in yt that process data utilize a system of data “chunking,” whereby
segments of data identi�ed during coarse-grained indexing are subdivided by one of a few di�erent
schemes and yielded to the iterating function; these schemes can include a limited number of tuning
parameters or arguments. These three chunking methods are all , spatial and io . The all
method simply returns a single, one-dimensional array, and the number of chunks is always exactly
one; this enables both non-parallel algorithms and simple access to small datasets. spatial
chunking yields three-dimensional arrays. For grid-based datasets, these are the grids, while for
particle and octree datasets they are leaf-by-leaf collections of particles or mesh values. Optionally,
the spatial chunking method can return “ghost zones” around regions, for computation of stencils.
The �nal type of chunking, io , is designed to iterate over sets of data in a manner that is most
conducive to pipelined IO. These will not always be load-balanced in size of the returned chunks,
however. In some cases, io chunking may return one �le at a time (in the case of spreading items
across many di�erent �les), while in others it may be returning sub-components of a single �le. This
chunking type is the most common strategy for parallel-decomposition.

Necessarily, both indexing and selection methods must be implemented to expose these di�erent
chunking interfaces; yt utilizes speci�c methods for each of the primary data types that it can access.
We detail these below, speci�cally describing how they are implemented and how they can be
improved in future iterations.

Grid Analysis

Figure 7: The grid structure of the simulation IsolatedGalaxy

Figure 7: The grid structure of the simulation IsolatedGalaxy

yt was originally written to support the Enzo code, which is a patch-based Adaptive Mesh
Re�nement (AMR) simulation platform. In Figure 7 the grid structure of one of the standard yt
example datasets, IsolatedGalaxy , can be seen. Analysis of grid-based data is the most frequent
application of yt . While we discuss much of the techniques implemented for datasets consisting of
multiple, potentially overlapping grids, yt also supports single-grid datasets (such as FITS cubes) and
is able to decompose them for parallel analysis.

yt also supports other grid patch codes, listed in the section on frontends.

yt supports several di�erent “features” of patch-based codes. These include grids that span multiple
parent objects, grids that overlap with coarser data (i.e., AMR), grids that overlap with other grids that
provide the same level of resolution of data (i.e., grids at the same AMR level), re�nement factors that
vary based on level, and edge, and vertex-centered data. For the cases of overlapping grids (either on
the same or higher re�nement levels) masks are generated that indicate which data is considered
authoritative.

As noted in Data Objects, the process of selecting points is multi-step, starting at coarse selection that
may be at the �le level, and proceeding to selection of speci�c data points that are included in a
selector. For grid-based data, the coarse selection stage proceeds in an extremely simple fashion, by
iterating over �at arrays of left and right grid edges and creating a bitmap of the selected grids.
Because this method – while not taking advantage of any data structures of even mild sophistication –
is able to take advantage of pipelining and cache-optimization, we have found that it is su�ciently
performant in most geometries up to approximately grid objects. In those cases, the distinction
between “wide and shallow” grid structures (where re�nement occurs essentially everywhere, but not
to a great degree) and “thin and deep” grid structures (where re�nement occurs in essentially one
location but to very high levels), as well as the speci�c selection process, impact the overall
performance. The second-stage selection occurs within individual grids, where points are selected

106

based on the data point center. In the case of cell-centered data, this returns an array of size where
 is the number of points selected; in the case of 3D vertex-centered data, this would be .

Indexing grid data in yt is optimized for systems of grids that tend to have larger grid patches, rather
than smaller; speci�cally, in yt each grid patch consists of a Python object, which adds a bit of
overhead. In the limit of many more cells than grid objects, this overhead is small, but in cases where
the number of grids is this can become prohibitive. These cases are becoming more common
even for medium-scale simulations.

To address both the memory overhead and the Python overhead, as well as more generally address
potential scalability issues with grid selection, several tentative explorations have been made into an
implementation of a more sophisticated “grid visitors” indexing and selection method, drawing on the
approach used by the oct-visitors (described below in Section #sec:octree_analysis). These were an
attempt to unify the selection methods between octrees and grids, to reduce the overall code
duplication and implementation overhead. Each process – selection, copying of data, generation of
coordinates – is represented by an instance of a GridVisitor object. A spatial tree is constructed,
wherein parent/child relationships are established between grids. The tree is recursively traversed,
and for all selected points the object is called. This allows grids, their relationships, and the data
masks to be stored in structures and forms that are both optimized and compressed. This method is
essential for scaling to a large number of grid patches; the storage requirements of a single grid patch
Python object are around 1K per object (about one gigabyte per million grids), whereas the optimized
storage reduces this to approximately 140 bytes (about one gigabyte per eight million grids), with
further reductions possible; for selection operations, we are also able to reduce the number of
temporary arrays and utilize compressed mask representation, bringing peak memory usage down
further. The spatial-tree optimization substantially increases performance for “wide and shallow”
dataset selection. However, while such an implementation may be possible, the previous attempts
were stymied by performance and maintenance considerations for the grid code, in particular related
to the masking of “child” zones in an e�cient and straightforward manner.

Octree Analysis

yt supports octree-based AMR datasets (primarily RAMSES and ART, but also the output from the
octree-based radiative transfer code Hyperion). yt stores a copy of the octree using a pointer-based
approach, where each oct points to its eight children (if re�ned). The octs living at the coarsest level of
the simulation are stored as a uniform grid. For domain-decomposed datasets, each domain is
represented as a sparse octree, where the root octs are stored as a list and e�ciently accessed using
a binary search, ensuring each root oct is found in time, where is the number of root
octs in the domain. Each oct is represented as structure that contains the on-�le location of the oct
(file_ind) and its in-memory location (domain_ind), the index of the domain it belongs to
(domain) and a list of pointers to its children (up to eight in 3D). This requires at most 88 bytes per
oct.

In order to load data within a given region, a two-step approach is followed. First, the cells within the
region of interest, as described in Data Objects are selected. yt relies on an oct-visitor machinery
combined with selection routines. The tree is recursively traversed depth-�rst starting from the root
grid, following only those branches that may intersect with the selected region. At the tip of each
branch, the up-to-eight leaf cells are visited. In a �rst pass, the number of selected cells is computed
and in a second pass, the on-�le location of their parent oct is stored. Second, yt relies on the on-�le
location obtained from the octree traversal to lazily read data from disk. This ensures that only the
minimal amount of data is being read and is particularly e�cient when accessing a region spanning a
small number of domains and/or a small number of re�nement levels.

N
N (N , 8)

∼ 107

O(log(N)) N

Recently, yt has been extended to fully support accessing neighboring cells. This is achieved by
computing one-cell thick quantities around each oct, which emulates the “ghost zones” found in
patch-based codes. This approach has the advantage of abstracting the octree structure and provides
a common interface to create derived �elds, as described in 1.7.1.2. The 56 neighbors ()
surrounding each oct are found by performing a search in the octree, which �nds any neighbor in

, where is the level of the central oct. The search is illustrated on Figure 8. Other
optimizations are possible, but not yet implemented in yt , that trade computational time with
memory, for example by storing the tree as a fully-threaded structure (i.e. store pointers to the 6
neighbors sharing a face with each oct), or by starting at a central oct and searching “upwards and
outwards.”

x
y

l = 5

l = 4

l = 3

l = 2

l = 1

Figure 8: Illustration of a binary search through a quadtree. The search starts at the root level (level = 1 here) and
recursively selects the quad that contains the point until reaching a leaf. The procedure is easily generalized in 3D.

∆ x

f 01 f 11 f 21 f 31

f 02 f 12 f 22 f 32

f 03 f 13 f 23 f 33

f 00 f 10 f 20 f 30

x

y

f 21− f 01
∆ x

f 22− f 02
∆ x

f 31− f 11
∆ x

f 32− f 12
∆ x

Figure 9: Scheme of the AMR structure used to estimate the gradient of a quantity in the central oct (red). Octs are

represented in thick lines, cells in thin lines and virtual cells in dashed lines. Left panel: The virtual cell values on a
grid are interpolated from the nearest cell in the AMR grid. If the nearest cell is at the same (or coarser) level, its value is
used directly. Note that virtual cells and have the value of the the actual coarser cell (green). If the cell is re�ned,
the mean of its children is used (for example is the mean of all the blue cells). Right panel: Gradients are estimated
using a �rst-order �nite di�erence centered scheme on the virtual cells, here illustrated for a gradient along the

43 − 23

O(level) level

43

f31 f32

f20

43 x

direction. NOTE: the blue cell should be used in the example (for instance make it the cell, rather than the
one since the direction ends up not being used in the actual computation

SPH Analysis

Smoothed Particle Hydrodynamics (SPH) is a commonly-used method for solving equations of
hydrodynamics in astrophysics (as well as many other �elds!) from a lagrangian perspective. This
provides many advantages over grid-based discretizations, but also poses somewhat di�erent
challenges for analysis and visualization. While a full description of SPH is outside the scope of this
paper, there are a handful of crucial and important pieces of information that we will review. For more
information, we refer interested readers to this comprehensive review of Smoothed Particle
Hydrodynamics by Daniel Price [6], the one by Volker Springel [7], or to the SPLASH method paper by
Daniel Price [8]. SPH de�nes �eld quantities at a set of moving points, allowing generic �eld values
(i.e., between the points) to be computed by integrating over all the elements in the domain using a
special-purpose kernel; this method is an exact interpolation between the discretized points by
applying the smoothing kernel. Formally, this is represented as:

This is then reduced to a sum over the particles (the discretization points):

In these equations, is the �eld, W is the weighting function (the ‘kernel’) and is the smoothing
length. This weighting function typically takes the shape of a Gaussian, approximated through various
spline functions (truncated at some radius), but that is not strictly necessary [9]. The quantity , the
smoothing length, has previously been referred to as the ‘half-smoothing length’ (hence the variable
name hsml used in many contexts), but formally represents the full-width-half-maximum of the

Gaussian approximated by the spline kernels, with the ratio [10]. The value of
in adaptive simulations is typically allowed to vary (which is extremely common in astronomy, though
this is not true when SPH is applied to other domains where the density of the �uid remains roughly
�xed) such that a constraint equation, e.g.

is satis�ed, where is a �xed constant that sets the spatial resolution of the simulation and is the

number of dimensions. Various codes may change this constraint equation for di�ering purposes,
such as con�ning the integral to a �xed number of particles, or those that evaluate the constraint
based on pressure criteria, and so forth. Many codes store the maximal radial extent of the kernel
(known as the kernel extent, and often represented by), as this is what is used in neighbour �nding
operations. The drawback to this choice is that the speci�c value of is kernel-dependent, as some
may cut o� at much shorter distances than others when representing the same Gaussian. As di�erent
codes and methods make use of di�erent kernels for various reasons (ones with larger cut-o� radii
can produce less noisy results, but are computationally more costly), some codes now employ

, where is a kernel-dependent quantity.

In general, there are two approaches to de�ning the �nite set of particles that contribute to a �eld at a
given point. In “scatter” methods, computing a �eld at a given point is conducted by iterating over
particles and identifying those whose smoothing length overlaps with a given point. In the alternate
method “gather,” the outer and inner loops of the algorithm are essentially swapped; for every point
at which a �eld value is sought, the local smoothing length is computed and then all particles within
that smoothing length are used in the computation.

For the purposes of post-processing analysis and visualization, the most important criteria for
applying SPH to a set of particles are to ensure that the function that computes �eld values at a given

f01 f20

y

A(r) = ∫ A(r
′)W(|r − r

′|,h)dV (r
′)

A(r,h) = ∑
j

VjAjW(|r − rj|,h)

A h

h

ℓFWHM/h = √2 ln 2 h

n(r,hi) = ∑
j

W(|r − rj|,hi) = ()nD

,
η

hi

η nD

H
H

h = H/γK γK

location is identical to that used inside the simulation code (or as close as possible) and that the
calculations are conducted in as short a time as possible. This set of dual requirements has led to yt
implementing a �exible system for de�ning the smoothing kernel used, whether or not a
normalization step is applied to SPH quantities, and the option to use either “scatter” or “gather”
methods for computing �eld values at �xed locations.

Previous versions of yt provided analysis of SPH data through a hybrid approach that mixed pure-
SPH analysis with octree-based gridding and indexing that used particle density as a guide for the
necessary resolution. Although the present, yt 4.0 series does not utilize octrees for particles, a
description of the previous implementation is useful to provide both historical information and
modern motivation for the “demeshening” initiative that led to the current code base.

In practice, what this meant was that when a dataset was loaded, the particles positions were
converted into one dimensional Morton index values, sorted, and by using a process of identifying the
longest pre�x in their bitwise representations, an octree (that mapped directly onto the Morton index
values) was constructed. This octree was controlled by two parameters: n_ref , which speci�ed the
number of particles in an octree leaf node necessary to re�ne that node into eight sub-octants, and
over_refine_factor , which speci�ed the number of cells that each leaf node represented. For

instance, if n_ref was set to 64 (the default), any octree node containing 64 particles would be
re�ned into eight child nodes; if over_refine_factor was set to N, each leaf node would consist of

a set of zones that were zones on a side (i.e., the default over_refine_factor produced eight
mesh elements total).

Constructing these octrees using morton indices, if the entire set of particles could be stored in
memory simultaneously, was extremely e�cient. To do so, the particles merely needed to be
converted into a morton index via fast, bit-level operations, those index values sorted, and then
processed in order to identify the greatest common bit-pre�x. Because two successive particles with
identical index values would share an octree location, looking for sequences of identical pre�x values
(i.e., lower-level octree colocation) naturally produces an octree. When �uid quantities such as density
were requested in the yt 3.0 series, the values were computed on the mesh de�ned by the octree;
increasing the over_refine_factor and decreasing the n_ref would serve to increase the
resolution. While this produced mostly-acceptable visualizations, and in particular produced
dynamically-resolved visualizations, it posed several problems for both visualization and analysis. The
�rst, and arguably the most important, is that the strict locality requirements for re�nement produced
artifacts at leaf node boundaries. This resulted in incorrect and unphysical visualizations of
hydrodynamic quantities, a�ecting most obviously those regions at the edges of clusters of gas
particles. These were mitigated in regions of highly-clustered gas particles, but visual artifacts were
still clear, as yt was applying a visualization suited for �nite volume elements to Lagrangian particles.

With the 4.0 series, yt no longer utilizes octrees for analyzing, meshing or visualizing SPH data.
Indexing, for the purposes of fast, memory-e�cient access to subsets of the data, is provided by a
bitmap index using the Morton indices of the particles, as described in Bitmap Indexing. For the
purposes of visualization, any quantity requiring smoothing over nearest neighbors is computed on-
demand at each pixel in the output image; this provides much higher resolution than the previous
method, which was both subject to free parameters and required the construction of a 3D �uid �eld
that was then collapsed to 2D for visualization. In many cases, this is also considerably more
performant, as constructing a full-domain 3D �uid �eld is avoided, thus reducing both memory
requirements and the number of �oating point calculations.

Development of this new method was referred to internally as “the demeshening,” as it served to
eliminate the global (octree) mesh. In order to facilitate the massive, type and dimensionality-speci�c
spatial queries necessary for performing millions of queries as e�ciently as possible, and with as little
overhead as possible, yt packages a kD-tree written in Cython that can be called from either Cython

2N

or Python, and which provides low-level APIs for querying from within tight loops. Whereas previously,
constructing a projection or a slice would slice through an octree mesh and provide the results from
that variable resolution mesh, the current version of yt ’s SPH machinery will instead construct a
pixel plane and smooth the appropriately identi�ed particles onto that pixel plane. This produces
much higher-�delity results (see Figure 10), but a current limitation is that whenever the pixel plane is
changed, the particles must be re-deposited; this puts it at odds with the similar machinery for octree
and patch-based datasets, which provide a “read-once-pixelize-many” approach.

The octree method – while not incapable of utilizing di�erent normalization and particle search
methods – was less �exible than the current, de-meshened approach. For instance, the method of
SPH particle identi�cation (i.e., so-called “scatter” or “gather” methods for correlating particles with
positions) is now �exible and able to be set at runtime. The normalization (if used) can take into
account global quantities, local quantities, and is �exible based on the �eld being smoothed.

Figure 10: Comparisons between the older, octree-based method used in version 3.0 of yt (left) and the newer,
“demeshened” algorithm used in yt 4.0 and beyond (right). The left image clearly shows artifacts from the octree
structure imposed on the underlying dataset by yt , and the right hand side is much smoother, with more de�nition at
individual pixels. The di�erence in color bars is notable as well, accounted for by the di�erent normalization methods.

Some additional di�erences between SPH analysis and the analysis of �nite volume data are present
when utilizing data selectors. For instance, 3D data selectors as applied to �nite volume codes only
select those cells whose centers fall within the data selector. 2D and 1D data selectors (such as slices
and rays) also include those �nite volume cells that the selector passes through. However, with SPH
data, the selection methods in 2D and 3D will always include those particles whose spheres of
in�uence, de�ned by the appropriate smoothing lengths, are within or overlapping with the data
selector. This is somewhat counter to the expectations set by the grid codes, but aligns with the need
to have a fully self-contained data-container for computing �eld values. For instance, this means that
a “ray” object (often used to compute, for instance, the column density in a cosmological simulation)
will in fact include a set of particles within a (potentially) varying impact parameter. This can be seen in
diagram form in Figure 11. We note that, as described in the SPLASH method paper [8], the kernel
interpolation can be computed using the (dimensionless) ratio between the impact parameter of the
ray and the smoothing length of the particle.

Figure 11: A cartoon diagram of a ray passing through a collection of particles. The radius of the particle is indicative of
its smoothing length. As can be seen, the individual particles each contribute di�erent amounts as a result of their
smoothing length, the chord-length as the ray passes through the circle, and the values within each particle.

Other than these di�erences, which have been intentionally made to align the results with the
expected results from the underlying discretization method, the APIs for access to particle data and
�nite volume data are identical, and they provide broadly identical functionality, where the disparities
are typically in functionality such as volume rendering. This allows a single analysis script, or package
(such as Trident), to utilize a high-level API to address both gridded and Lagrangian data while still
ensuring that the results are high-�delity and representative of the underlying methods.

Unstructured Mesh Analysis

yt has support for several di�erent types of unstructured mesh elements. Typically, these are
supplied as a set of coordinate points (vertices) and connectivity between those vertices. yt is able to
interpret three types of elements (and their 2D counterparts): tetrahedral elements (4 faces, 4
vertices), wedge elements (5 faces, 6 vertices) and hexahedral elements (6 faces, 8 vertices). These
vertices can serve as control points, where values are de�ned at those locations; in �nite element
simulations, there can be additional control points for higher-order solutions. (For a deeper
investigation of the way �nite elements are de�ned and how this corresponds to real-space
coordinates, we suggest starting with the periodic table of the �nite elements which provides both
visual reference and a set of citations for further exploration; further explanation can be found in the
SIAM News Article describing the table.)

Data Access for Unstructured Mesh

Similar to how yt manages data access for particle and �nite volume datasets, for unstructured
mesh datasets yt identi�es each element collection as a chunk. This means that for situations where
you have multiple meshes, composed of individual elements, each will represent its own chunk as well
as its own mesh object. For example, in MOOSE-based simulations with multiple connectivity arrays,
each will be a di�erent “�eld type” – typically named connect1 , connect2 , etc. These are then
joined (similar to how 1.7.1.4 are de�ned) into collections that include all of the elements of di�erent
types.

A few items are of particular note in the implementation of �nite element mesh analysis in yt . The
�rst is that yt supports direct, native higher-order �nite element visualization. Visualization of
unstructured meshes, and �nite element frameworks, utilizes its own set of custom pixelization
routines that are dependent not only on the element type but the order of the calculation.

The second item that is of relevance is that yt is able to apply “displacement” vectors to the
elements; these displacement vectors can vary with time, and thus element position and shape can
vary over the course of a simulation. By providing appropriate arguments, yt can scale these
displacement vectors (either with scalars or vector values) to exaggerate or distort their application,
and in addition a vector o�set can be applied to the vertices in the dataset. Scaling and o�setting are
both applied on a per-mesh basis, enabling individual collections of elements to be scaled individually.

One of the most important optimizations that has yet to be applied to the unstructured mesh support
in yt is in the “coarse” indexing process of selection. While �ne-grained indexing and selection is
applied, the process of checking which meshes (i.e., coarse chunks) may intersect a given selector
currently passes everything through to the next stage; this is highly-ine�cient, and an important
target for future optimization.

Sampling Mesh Elements

https://www-users.cse.umn.edu/~arnold/femtable/index.html
https://sinews.siam.org/Details-Page/periodic-table-of-the-finite-elements

The pixelization routines in yt for unstructured mesh elements rely on computing for all
locations within an element that appear in the image plane. To properly conduct this pixelization, as
well as to utilize software or hardware volume rendering, we have to construct a high-�delity sampling
system that can accept data of di�erent orders, connectivity, and shape. This utilizes a multi-step
process that is mediated by subclasses of the Cython-based class, ElementMapper . All
ElementMapper subclasses need to provide two functions, one to transform a “physical” position

 to the position within the reference “unit” element (, and one to sample the value at
a position in the “unit” element () given a set of vertex or control point values. Where
hand-written optimizations for these functions are not available, classes are autogenerated from high-
level shape function de�nitions; functions for both the sampling method and a Jacobian are generated
using SymPy and output to Cython, where they are compiled ahead of time. In 3 we enumerate the
types of �nite elements supported at present.

Table 3: Finite element types supported in yt .

Type # Dims # Vertices Description

P1 1 2 Linear

P1 2 4 Linear Triangular

Q1 2 4 Linear Quadrilateral

T2 2 6 Quadratic Triangular

Q2 2 9 Quadratic Quadrilateral

P1 3 8 Linear Tetrahedral

Q1 3 8 Linear Hexahedral

W1 3 6 Linear Wedge

Tet2 3 10 Quadratic Tetrahedral

S2 3 20 Quadratic Hexahedral

To conduct pixelization of a slice or to compute values for volume rendering, yt �rst computes
bounding boxes for the individual values. Once a pixel has been identi�ed as being “within” a
particular element (which also takes into account the shape of higher-order elements, rather than
assuming a �at set of planes) the pixelizer has to compute the value at that location. In order to
compute intra-element values at a position the position within a reference element

 must �rst be computed, and then the value solved for given the values at the vertices. This
is conducted within the function sample_at_real_point , which is de�ned for each
ElementMapper .

f(x, y, z)

(x, y, z) x′, y′, z′)
f(x′, y′, z′)

(x, y, z)
(x′, y′, z′)

Figure 12: Example of a �nite element mesh with higher-order tetrahedral elements, including a zoom-in on one of the
elements

Of particular note is that, as listed in Table 3 , yt has support for higher-order element types. In
Figure 12, an example of this is displayed. On the left of the �gure is a slice plot through a 2nd-order
tetrahedral mesh. On the right, we have zoomed in on the edge of the boundary of the element mesh.
In both, the mesh elements have been outlined in black. As is clearly visible in the second plot, yt is
applying higher-order methods for computing pixel values; not only through non-linear interpolation
of �eld values, but also in the shape of the elements, which extend outside the linear boundaries of
the tetrahedral elements.

Non-Cartesian Coordinates

In Section 1.5.1, we describe the relationship between the internal ‘index’ space that yt uses for
referencing values and the natural ‘data’ space that the values represent. The abstraction of the
coordinate systems and the relationship between index-space and data-space provides the ability to
convert between the two; however, constructing visualizations and annotations requires an additional
level of complexity.

The single most important shortcoming in the analysis of non-cartesian datasets in yt is that the
data selection operators almost exclusively function on the coordinates in index space, rather than in

data space. As such, subselecting datasets by utilizing traditional geometric selectors in yt is much
less useful than it should be; for example, selecting a sphere (see 1.6.2.20) applies spherical selections
in index space, which result in a decidedly non-spherical object. Selections of objects such as 1.6.2.17
do make considerably more sense, however, as they are often thought of as sweeping data along
coordinate axes; the region object itself will naturally select wedges in a spherical domain, for
instance. Future versions of yt will likely introduce means of more clearly selecting objects in
coordinate space, for more natural subsetting of data. It is still possible to apply data selection based
on �eld values, which can include the coordinate-space �eld coordinates (such as).

Despite these weak spots, however, yt does provide a number of routines that are speci�c to non-
cartesian datasets, including pixelizers for cylindrical and spherical coordinate systems. (See 1.11.39
for more detail on this process.) Pixelizers that take variable-resolution data along the and axes
have been made available (for slicing along a conical section of a sphere or along the axis of a
cylinder) as well as very simple projections from the surface of a sphere to a �at image (speci�cally
utilizing the Aito� projection). yt also provides access to Cartopy [11] for more advanced or
featureful map projections, as well as overlaying continents and other geographic shapes. In Figure 13
we demonstrate some of the native, built-in functionality yt provides for non-cartesian data. This
dataset, a simulation of magnetically-driven winds in a protoplanetary disk, was conducted in
spherical coordinates. Here, we have used yt ’s functionality for overplotting streamlines as well as
line integral convolution on irregular meshes to display the data in its native resolution and as a slice
along the azimuthal axis of the simulation domain.

r, θ,ϕ

r θ
z

Figure 13: Spherical data from a protoplanetary disk, overlaid with annotations supplied by yt to demonstrate both
the magnetic �eld and velocity structure of the data. Data are used, with permission, from a simulation based on the
ones described in [12].

Indexing Discrete-Point Datasets

Advances in both hardware and software facilitate astrophysical datasets of growing complexity and
size. The datasets produced by numerical simulations can currently reach sizes of $$100 Tbytes split
across hundreds of �les [e.g. 13]. For even simple analysis tasks, the cost of incrementally reading
datasets this large into memory is quite high. This problem is not limited to theoretical work. During
operations the Large Synoptic Survey Telescope (LSST) will produce 15 Tbytes of data each night [14].
In order to analyze such large datasets, we need innovative techniques for quickly indexing and
selecting data without loading the entire dataset into memory. We present a technique for using
Morton bitmap indexes to map �les and accelerate data analysis.

Theory and Background

Domain Partitioning Between Files

A common analysis task is the selection of data within a subset of the full domain; we use the term
“selector" to refer to the selection operator. If the dataset is split across multiple �les, either due to
size constraints or to allow for parallel I/O, such selections require every �le to be loaded and parsed
in order to assemble all of the data within the selection criteria. This process can be very costly in
terms of both the memory required to store the data and the time required to read each �le.
However, if the contents of the �les are mapped in advanced, only the �les touched by the selection
will need to be loaded. This is particularly e�ective for partitioning schemes that are localized within
the domain. If each �le contains data that are localized to one part of the domain, selections of
contiguous sub-sections within the domain will require fewer �les to be loaded. Figure 14 shows four
examples of possible partitions of a two-dimensional spatial domain split equally between 8 �les.

Figure 14: Examples of four di�erent schemes for partitioning a 2D domain between 8 �les. Each color represents a
di�erent �le.

Panel (a) is an example where random parts of the domain are contained within each �le. In such a
case, many �les will need to be loaded for contiguous selections within the domain. In panel (b), the
domain was split between the �les along the dimension. Fewer �les will need to be loaded for
queries along the -dimension, but contiguous selection in will still require a greater number of �les
since the partition is not well localized in that dimension. Panels (c) and (d) are both examples of
partitioning the domain between the �les along a space �lling curve [Morton and Hilbert curves
respectively; [15]; [16]]. These partitions have the greatest chance of limiting the number of �les that
must be loaded for a contiguous selection with slightly improved localization for the Hilbert curve.
Consequently, Hilbert curves have also been used for load-balancing in parallel simulation codes like
Gadget-2 [17] and RAMSES [18].

Figure 15 shows examples of three selections within the above domain partitions.

x
y x

Figure 15: Examples of �le selection for four di�erent domain partitions and three di�erent shaded selectors. The
number of �les above each images is the number of �les that must be loaded in order to get all of the data within the
selected region.

Figure 16: Examples of �le selection for four di�erent domain partitions and three di�erent shaded selectors. The
number of �les above each images is the number of �les that must be loaded in order to get all of the data within the
selected region.

Figure 17: Examples of �le selection for four di�erent domain partitions and three di�erent shaded selectors. The
number of �les above each images is the number of �les that must be loaded in order to get all of the data within the
selected region.

For the smallest selector (�rst row), the random domain decomposition (a) already requires half of the
�les to be loaded while more localized schemes require much fewer. Similarly, while the sliced domain
partition (b), requires the fewest �les to be loaded when the selector is oriented in the same direction
as the slicing (second row), it requires all of the �les when the selector is perpendicular to the slicing
(third row). While some datasets may have information on the domain range covered by each �le, the
partitioning scheme used for simulation output is often decided at runtime, can be system
dependent, and may be imperfect.

Files are often partitioned for parallel I/O such that each processor outputs data on the portion of the
domain it is responsible for processing. To limit the cost of communication between processors, the
domain will be split across processors such that neighboring processors are responsible for
neighboring parts of the domain. This means that, although the overall partitioning scheme may be
known for a given dataset, the exact order of the �les will be dependent on the con�guration of the
processors at runtime.

The partitioning can also be imperfect if the domain decomposition is not perfect at the time of
output. For instance, in astrophysical N-body simulations, it is possible for particles to travel from one
processor’s domain to another. In this case, the partition will only be perfect directly following an
update to the domain decomposition.

In cases where the exact �le organization is not known or imperfect, it is advantageous to map the
�les post-process in order to speed up selections for analysis. Although the same result can be
achieved by re-sorting the data itself, creating the map can be less computationally less expensive
than re-sorting the data, can be saved for use with multiple selections, and does not required write
access; this is typically not feasible, especially in the case of datasets shared by large, distributed
communities.

Morton Indices

Morton ordering maps multidimensional data onto a one-dimensional space �lling curve [15]. This is
done by breaking up the domain into cells where each cell’s position within the -dimensional
domain can be described by integers. The Morton index of the cell is then created by interleaving
the bits of the integers to create a single integer that fully describes the cell’s position (see panel (b)
Figure 18). As seen in panel (a) of Figure 18, ordering of the cells by their Morton indices forms a space
�lling Z-curve.

Figure 18: Example of 3rd order Morton curve in two dimensions. The bits of the and indices are interleaved to
generate a single integer that fully describes the cell’s location within the two-dimensional domain to within th of
the domain in each dimension.

The precision of a single Morton index is only limited by the size of the integer used to store it. For
instance, 64-bit Morton indices in 3 dimensions can be localized to th of the domain in each

N
N

N

x y

1/23

1/221

dimension (bits = 63 bits). If the domain is binarily divided into subcells to some order in
each dimension (i.e. cells), coarser Morton indices can be obtained by simply masking lower bits.
Morton ordering has been used to speed up quadtree construction [19], nearest neighbor searches
[20], and range queries [21]. By recording the indices of the cells containing data from each �le within
a dataset, Morton indices can also be used to construct one-dimensional maps of an -dimensional
dataset that can be represented as bitmaps.

Bitmaps & EWAH Compression

Bitmap indexes use the values of single bits within an array of bits to describe dataset properties. This
form requires minimal memory and can be �ltered using computationally inexpensive boolean
operations. Bitmap indexes have long been popular for use with large data warehouses [22,23,24].
However, as scienti�c datasets have become larger and more complex, they have also begun to gain
traction in a diverse array of scienti�c �elds including geosciences [25], earth sciences, rocket science
[26,27], high-energy physics [28], and combustion [29].

In cases where data attributes can take on a �nite set of values, one bitmap is constructed for each
possible attribute value. Within the bitmap each bit speci�es whether or not the corresponding data
point has that value. In this way, queries for data with a single attribute value require consulting only
one bitmap and queries of multiple attributes/values can be done using boolean AND operations on
the corresponding bitmaps. In the case of scienti�c data, which often contains �oating point value
attributes, the attributes must be binned prior to constructing the bitmaps [30,31,32]. Here, Morton
indices are used to bin N-dimensional �oating point data onto one-dimension. As a result, each �le
can be described by one bitmap.

For each �le within a dataset, the Morton indices touched by the data within that �le can then be
stored in a bitmap index for future searches where the value of bit indicates whether or not Morton
index is touched by the �le in question. For Morton indexing of order , this would result in a bitmap

of length bits per �le. For large bitmaps, this can become costly in terms of memory and the time
required to perform bitmap operations. However, Enhanced Word-Aligned Hybrid (EWAH)
compression can be used to limit these costs, particularly when the domain is densely or sparsely
populated in localized regions [33,34,35].

An EWAH compressed bitmap will be smaller when there are long sequences, or “runs,” of identical
values. This means that an EWAH compressed bitmap will be smallest if either all or none of its bits
are set. An uncompressed bitmap would require the same, maximum, amount of memory in both of
these cases. The locality of Morton indices takes advantage of the EWAH compression. If there are
regions of the domain that are densely/sparsely populated, there Z-order space �lling curve ensures
that the bits denoting those regions will be adjacent, increasing the likelihood that there will be runs
of identical (set/unset) bits and limiting the size of the compressed bitmaps.

Collisions

It is possible that two �les will contain data within the same Morton cell. This would mean that any
time that cell is touched by a selection, both �les would need to be loaded even if the selection only
touches data from one of the �les. Figure 19 provides an example of collisions between two �les. In
panel (a) of Figure 19, purple cells are those that contain data from both �les, a collision, for a 3rd
order Morton index. Any selector that contained one of those cells would need to load all of the data
from both �les, even if it only selected part of the cell. Where the data is highly-concentrated in a
central region (for instance, in a galaxy formation simulation with particles centrally-concentrated) this
can mean that some regions su�er from worst-case scenario collision.

3 × 21 k

2Nk

N

j

j k

2Nk

Figure 19: Examples of a collision between two �les. The red points and blue points are contained by two di�erent �les.
The larger grid in both panels denotes the boundaries of 3rd order Morton cells. The cells containing points from either
�le are shaded accordingly such that cells containing points from both �les are purple. The smaller grids within these
cells on the right are the boundaries of 2nd order Morton cells re�ning the collisions.

Collisions can be limited by either increasing the order of the index or allowing for multi-resolution
indexes [26,27]. Panel (b) of Figure 19 demonstrates an example of nesting a second index within cells
that contain collisions. In those cells which contained collisions, a 2nd order Morton index was added.
Those cells with collisions at the level of the re�ned index (purple cells in panel (b)) cover a much
smaller portion of the domain than the cells with collisions at the level of the coarse index (purple
cells in panel (a)). This means that any given selection is less likely to contain a collision and it will be
less likely for a selector to require both �les to be loaded unless it actually touches data from both
�les.

Increasing the order of the coarse index has the same e�ect as nesting a second re�ned index within
cells with collisions, but can also increases the size of the resulting map and the time it takes to
identify �les touched by a selection. However, if the order of the coarse index is too small or the order
of the re�ned index too large, this too can increase the cost of a selection in terms of memory and
time. Section 1.10.2.1 discusses this tradeo� and how to choose index orders.

Collisions are more common for �le partitioning schemes that are not localized. Figure 20 shows an
example of collisions for the di�erent partitioning schemes discussed in Section 1.9.1.1.

Figure 20: Examples of collisions for four di�erent domain partitioning schemes. The heavy black lines denote 1st
order Morton cells. The presence of more that one �le (color) within a Morton cell indicates a collision. NOTE: from an
accessibility standpoint, I must note that using a smooth color gradient may be counter productive for
colorblind readers as it makes it a lot harder to perveice that neighbouring regions belong to di�erent �les.

For the random domain partition in panel (a), every cell within a 1st order Morton index will contain
data from all 8 �les. This means that any selection using a 1st order bitmap index will require every
�le to be loaded. For the more localized partitions in panels (c) and (d), only two �les touch each
Morton cell.

Ghost Zones

It is often the case that, in selecting a region, additional padding around the region should be included
in the selection. This is particularly useful for algorithms that need information about neighboring
points in the domain [e.g. gas properties in simulations using Smoothed Particle Hydrodynamics; SPH;
[36]; [37]; [17]]. For Morton indices, this is straightforward as the indices neighboring Morton cells can
be found by incrementing the bits corresponding to each dimension. We have included the ability to
pad selectors with some number of Morton cells referred to as ‘ghost zones’. Those �les that touch
ghost zones, but not the selector itself are referred to below as ‘ghost �les’.

Depending on how the domain is split between �les, the inclusion of ghost zones may or may not
increase the number of �les that need to be loaded. Figure 21 shows an example of a ghost zone
around the �rst selector from Figure 15.

Figure 21: Examples of a selector ghost zone with a width of one Morton cell at an index order of 3 for four di�erent
domain partitioning schemes. The shaded circular region is the selector and the shaded box is the ghost zone. Di�erent
partitioning schemes will lead to di�erent numbers of ghost �les. NOTE: same as �gure 13

The ghost zone has a width of one Morton cell at an index order of 3 and contains the same part of
the domain in each case. However, due to di�erences in how the domain was partitioned between the
�les in the four cases, the number of additional ghost �les touched by the ghost zone in each case is
di�erent. This will also depend on the order of the index to which ghost zones are added. Ghost zones
added at the order of the coarse index will be larger than those added at the order of the re�ned
index and will have a higher probability of touching additional �les. While including ghost zones is
advantageous when neighbor info is needed, it also increases the computational cost of identifying
�les (see Section 1.10.2).

Methods

The basic procedure for constructing the bitmap index is as follows:

1. Compute coarse indices. For each �le in the data set, read in the data and compute the indices of
Morton cells at a given coarse order that are touched by data contained within that �le. These
coarse indices are then stored by setting the corresponding bits in an EWAH compressed bitmap.

2. Find collisions. The indices of coarse cells that are touched by data in more than one �le
(collisions) are located using bitwise operations on the �le bitmaps. These indices are also stored in
an EWAH compressed bitmap.

3. Compute re�ned indices. For each �le in the data set, read in the data and compute the indices of
Morton cells at a given re�ned order within coarse cells with collisions that are touched by that �le.
These re�ned indices are stored in a map from coarse Morton index to an EWAH compressed
bitmap of re�ned Morton indices within that cell.

4. Output bitmaps. The EWAH compressed bitmaps for the coarse indices, re�ned indices, and
collisions are saved to an external index �le.

For large datasets and/or high levels of re�nement, this can be a time consuming process; however, it
must only be done once. For future selections, the bitmap can be quickly loaded and used to identify
�les in less time than would be required to load and query each �le within the dataset individually.
Selection using a loaded bitmap goes as follows:

1. Construct selector bitmap. In the same way each �le was mapped, the indices of Morton cells
touched by the selector are stored in a bitmap. This is done by checking for intersection of the
selector with Morton cells at the order of the coarse bitmaps. For contiguous selectors, this is done
at lower order (parent) cells �rst and continued recursively until the order of the coarse bitmap is
reached.

If a cell is completely within the selector, all of its child cells at the coarse order are added to the
bitmap.

If a cell intersects the edge of the selector, child cells at increasing orders are checked until the
order of the coarse bitmaps are reached. If the cell is at the coarse order and there is a collision
between two �les, a re�ned bitmap is the constructed for the selector in the same manner.

2. Find �les intersecting the selector. Bitwise operations with the coarse �le bitmaps are then used
to e�ciently identify �les that intersect the selector within coarse cells. If the coarse cells within the
intersection with a �le all have collisions with other �les, bitwise operations with the re�ned �le
bitmaps are then used to determine if the �le is selected at the order of the re�ned index.

If ghost zones are desired, the neighbors of cells that intersect the edge of the selector are added to a
separate bitmap. For cells without collisions, the neighbors are added at the coarse bitmap order. If
there are collisions, the neighbors are added at the re�ned bitmap order.

Tests

The utility of using Morton index bitmaps for mapping �les to decrease query times was tested on
arti�cial N-body simulation datasets containing points in three dimensions, distributed
between 512 �les. For each test a Morton index bitmap was constructed for the dataset and used to
identify �les touched by cube shaped three-dimensional selectors. The performance is assessed in
terms of the number of �les identi�ed and the average time required to identify them across 10 runs.
If fewer �les are touched, fewer �les will need to be loaded during analysis of a selected region and
the overall fraction of time spent on I/O will be lower. If less time is required to identify the �les

10243

touched by a given selector, more selections can be made using the same computational resources.
This was done for varying index orders (Section 1.10.2.1), selector sizes (Section 1.10.2.4), and
partitions of the domain between �les (Section 1.10.2.5).

Index Order

Overall Re�nement

The order of the Morton indices used to map the �les determines the time required to identify �les
and the number of collisions that will occur between �les. Higher order indices will result in fewer
collisions, but will take longer to query, as seen in Figure 22 Six selectors of varying sizes and positions
within the domain where used to identify �les based on Morton index bitmaps of varying order. The
test dataset was split across the �les using a Hilbert curve of order 6 with 10% scatter between Hilbert
cells to simulate an imperfect domain decomposition as can occur if particle positions are updated
and output prior to updating the domain decomposition.

Figure 22: Dependence of query time (top), fraction of �les selected/cells with collisions (middle), and index size
(bottom) on the total re�nement of the bitmap index. The solid black lines correspond to the query times and �les
identi�ed by just the selectors. The dashed blue lines correspond to the query times and additional �les selected when a
ghost zone with the width of one Morton cell is added around the selectors. The dash-dotted line in the middle panel
shows the fraction of cells with collisions between �les. NOTE: maybe this would make more sense as scatter plots ?
(connecting dots to �ll a continuous yet unreachable space of non-integer-limited x values seems
unappropriate.

Below a bitmap index order of 4, there are collisions between multiple �les within every cell, resulting
in a larger number of �les being identi�ed. However, as the order increases, the number of collisions
drops and the �le count plateaus at %. This translates to a % reduction in the memory and
time required for processing �les, a signi�cant increase in performance. For a 7th order bitmap index,
selection requires the time that the same selection took using a 6th order index, but there is

∼ 25 ∼ 75

> 100×

no change in the number of �les indicated. A 6th order index is su�cient to identify the minimal set of
�les touched by the selectors in this case because the dataset was partitioned between the �les along
a 6th order Hilbert space �lling curve. While it is generally true that the time required to identify �les
using a bitmap index will increase exponentially with the size of the index, the order of the index that
results in the minimal number of �les for any dataset will depend upon how the domain is partitioned
between �les (see Section 1.10.2.5). The memory required to store the index for the test dataset

scales according to , for a order index. If uncompressed bitmaps had been used instead of
EWAH compressed bitmap, the memory would have scaled with the total number of cells contained
within the 3-dimensional test domain ().

Collision Re�nement

Increasing the re�nement of the primary index does so for the entire domain and, as seen in Section
1.10.2.2, can become costly in terms of the memory required to store the bitmap and the time
required to perform operations. However, it is also possible to increase re�nement by nesting a
second Morton bitmap index within those cells of the primary index that contain collisions. As the
nested indexes will contain a smaller portion of the domain and data, they will be less complex and
can be compressed more e�ciently than the primary index covering the entire domain. This
enhanced compression means that, although a greater overall number of EWAH compressed bitmaps
will need to be utilized (one for the coarse index and one for each collision within the coarse index),
less space will be needed to store the bitmap and bitwise operations will be faster. Figure 23 shows
the results for adding a secondary index of varying order with the overall re�nement order of the
index (primary index order + secondary index order) held constant at 6. The test dataset and selectors
applied were the same as in Section 1.10.2.2.

∝ 22k kth

23k

Figure 23: Dependence of query time (top), fraction of �les selected/cells with collisions (middle), and memory required
to store the index (bottom) on the order of the secondary index used to re�ne collisions. In the middle panel, the solid
black line corresponds with the fraction of �les identi�ed, the dash-dotted blue line is the fraction of cells at the �rst
index level that have collisions, and the dotted red line is the fraction of cells at the second index level that have
collisions.

When the order of the second re�ned index is low, the �rst index is larger resulting in fewer cells with
collisions at the �rst index and more at the second. The reverse is true when the order of second
index is higher. As the overall order is held constant, the same number of �les are identi�ed
regardless of the orders of the �rst and second indexes. The time required to identify the �les is
minimized when cells within the �rst index become saturated with collisions. For secondary indexes of
order 2 or lower, the large increase in performance o�ered for increases in the index order results

from the reduction in the total complexity of the index which translates to shorter times for bitwise
operations and less memory required for storage. Above 2nd order, the overhead from storing and
accessing more complex EWAH compressed bitmaps for each collision begins to �atten the memory
scaling and increase the time required for queries. However, selections using higher order secondary
indices still require less time than in the case where only a single index is used.

The optimal value for the orders of the �rst and second indexes will depend upon the dataset in
question. The density of data points within the test dataset used here is relatively uniform throughout
the domain and does not need a high level of re�nement at collisions. However, if a datasetwere less
uniform with concentrations of points, the optimal order of the second index for performance may be
higher.

Selector Size

The time required to identify �les touched by a selection will also depend upon the size of the region
being selected. Larger selectors will intersect more indices and more �les, resulting in more bitmap
operations. Figure 24 shows the result from varying the selector size. The same test datasetfrom
Section 1.10.2.1 was used. A bitmap index with a 4th order primary Morton index and 2nd order
secondary Morton index was used in all cases. Each cube selector was placed at the center of the
domain and scaled along each dimension to some fraction of the total domain.

Figure 24: Dependence of query time (top) and number of �les selected (bottom) on selector width in terms of the total
domain width. The solid black lines correspond to the query times and �les identi�ed by the selectors alone. The dashed
blue lines correspond the query times and additional �les identi�ed when a ghost zone with a width of one cell is added
to the selector.

As the selector increases in size, it touches a greater number of �les, resulting in longer query times.
The number of �les touched increases in steps due to the way the test dataset was partitioned
between �les. Using the Hilbert curve, the domain covered by any one �le is localized and will have a
rectangular shape. This results in an ordered structure that is similar along all dimensions. An
increase in the number of �les touched indicates that the selector has grown past a �le boundary in
all directions. It is just prior to these jumps that ghost �les are present. If the selector edge is near a
�le boundary, ghost zones have the potential to overlap the domains contained by neighboring �les
that are not already touched by the selector. For such a highly ordered dataset, the ghost zones will
only identify additional �les for selectors that are nearing the edges of �le boundaries. However,
queries including ghost zones require slightly more time even when this is not the case.

Domain Partitioning

As discussed in Section 1.9.1.1, a bitmap index is more e�ective in cases where the domain is
partitioned between �les in a localized way. If �les contain non-contiguous parts of the domain,
contiguous selections will require more �les to be loaded. Figure 25 shows results for four di�erent
partitioning schemes. All four data sets cover the same three-dimensional domain with points
split across 512 �les. The Hilbert dataset is the same one used in previous tests (see Section 1.10.2.1
for a description). The Morton dataset is constructed in a similar way to the Hilbert dataset with �le
partitions occurring along a 6th order Morton curve and including a 10% scatter of points between
Morton cells. The sliced dataset is partitioned in slices along one dimension with 10% scatter of points
between adjacent slices. Files in the random dataset contain a random sample of points, uniformly
distributed across the domain.

10243

Figure 25: Dependence of query time (top), the number of �les selected (middle), and the size of the index (bottom) on
index order for di�erent domain partitioning between �les. The dotted magenta lines are for a randomly partitioned
dataset, the cyan dashed-dotted lines are a dataset partitioned by equal slices alone one dimension, the dashed red
lines are a dataset partitioned along an 6th order Morton curve, and the solid blue lines are a dataset partitioned along
a 6th order Hilbert curve. NOTE: it looks like the Morton curve is almost always behind the Hilbert one. Can you
use zorder to put it at the frontrow instead so that we can see both ?

Many more �les are identi�ed for the random dataset than those datasets with localized partitioning
of the domain. Above an order of 3, very few �les could be excluded for the random dataset. This was
not true for the localized partitioning schemes. At the highest order, only % of the �les
within these datasets would need to be loaded in order to get all of the data within the selected
regions, while % of the �les in the random dataset would be required. The smallest fraction of
�les were identi�ed for the Hilbert and Morton datasets, with a slightly greater fraction being

∼ 20 − 30

∼ 80

identi�ed for the sliced dataset. For a 6th order index and below, queries on the Morton and Hilbert
partitioned datasets are the fastest. An index order of 7 provides re�nement beyond the 6th order
curves used to partition the dataset between the �les and the required for queries on these datasets
increases dramatically. The sliced dataset performed particularly well in this case because the
selectors used were cubes and did not preferentially select along any one dimension.

Overall, this technique o�ers a considerable improvement in performance over other methods that
require reading, evaluating and discarding all of the particles.

Summary & Discussion

Mapping �les using Morton bitmap indexes speeds up analysis of large datasets split across multiple
�les by reducing the number of �les that need to be loaded in order to perform operations on a
subset of the full domain. The time required for making selections using the bitmap index is minimal
for even large datasets and can be optimized by partitioning the domain between �les in a localized
way and using an index or indexes of appropriate order for the dataset.

Without an index, queries require loading the data contained in every �le into memory and then
searching the data for those points that are selected by the query. With a bitmap index, queries
require loading the index, using it to identify the �les touched by the query, reading in the data
contained within the identi�ed �les, and searching the data for points selected by the query. In this
way, the bitmap index can decrease the computational cost of reading in the data and selecting data
points if it identi�es a subset of the total number of �les. While using an existing bitmap index
decreases the time required for queries in this case, constructing a bitmap index can be more
computationally expensive than directly querying the data without a bitmap index. Therefore, in the
case where only a small number of selections need to be made, it will be more e�cient to perform
direct queries of the data than to construct and utilize the bitmap index.

Bitmap indexing is particularly useful in astronomy and astrophysics. Output from N-body simulations
is often split between multiple �les to take advantage of parallel I/O and the domain decomposition
generally leads to localized partitioning between �les [17,37,38].

Currently, this technique is most useful for datasets split across multiple �les. However, it can also be
applied to single �les by dividing the �le’s contents into chunks. As in the multi-�le case, the single �le
would need to be organized such that chunks were localized within the domain to take full advantage
of the bitmaps. In addition, while the current implementation of this method is designed for three-
dimensional spatial datasets like those produced by astrophysical simulations, the same methods can
be applied to non-spatial datasets with arbitrary dimensionality.

Code

These procedures have been incorporated into yt as of version 4.0, but then as of version 4.2 have
been extracted into a standalone package entitled ewah-bool-utils . It is our hope that this will
expand its application to non-yt uses. The open source EWAHBoolArray C++ package is used for
implementing EWAH bitmaps [34,35] and exposed to Python using Cython [39]. The authors would
like to thank Daniel Lemire for his open source EWAH implementation.

Data Formats and Frontends

adaptahop

https://pypi.org/project/ewah-bool-utils/

Index Type: particle

Comments: Halo �nding format

ahf

Index Type: particle

Comments: Halo �nding format

amrvac

Index Type: grid

Comments: MPI-AMRVAC is a parallel adaptive mesh re�nement framework aimed at solving
(primarily hyperbolic) partial di�erential equations by a number of di�erent numerical schemes. The
emphasis is on (near) conservation laws and on shock-dominated problems in particular.

Primary Citations: [40,41,42]

Usage Citations: [43,44,45]

arepo

Index Type: particle

Comments: While listed as a “particle” dataset, AREPO data is properly described as a moving mesh.
For visualization purposes, yt treats it similarly to an SPH dataset; some e�orts have been made to
properly apply nearest-neighbor interpolation, but these have not been mainlined in the yt
visualization routines as of yet.

Usage Citations: [46,47]

art

Index Type: octree, particle

Comments: ART, or ‘NMSU-ART’ as it is occasionally referred to internally, is an octree-based code
that is often used for cosmology simulations and galaxy formation simulations. yt supports two sets of
data formats in the NMSU-ART family. The �rst is a particle-only format, where the particles are stored
independently of any gas structure. The second is the hydro data format, wherein gas values are
stored organized into an octree. Each of these constitutes a di�erent indexing system, sharing similar
datatypes, units, and so forth.

Usage Citations: [46,48]

artio

Index Type: octree

Comments: The ARTIO frontend, which shares some ancestry with the art or ‘NMSU-ART’ frontend,
utilizes a special purpose library for input/output operations called libartio , which is bundled with
yt.

Utilizing libartio is interesting from a historical perspective, as it provided an opportunity to
reorganize the way that yt understood indexing of octree datasets. Whereas previously yt required a
full understanding of data distribution, the artio frontend outsourced much of that to the internal
library, which it regarded as essentially an opaque API. Reducing the amount of internal bookkeepping
that yt had to do provided a lighter-weight interface to the data, which in turn has enabled other
frontends to be created using opaque APIs.

Usage Citations: [49]

athena

Index Type: grid

Comments: None

Usage Citations: [50]

athena_pp

Index Type: grid

Comments: None

Usage Citations: [51]

boxlib

Index Type: grid

Comments: BoxLib is the predecessor to the AMReX adaptive mesh re�nement library [52] and
supports all BoxLib and AMReX codes that use the native BoxLib binary output. AMReX implements
patch-based AMR following Berger and Colella [53] with typical re�nement jumps of 2 or 4 between
levels (this factor can vary in the level hierarchy).

Primary Citations: [52,54,55,56]

Usage Citations: [57,58,59,60,61,62]

cholla

Index Type: grid

Comments: CHOLLA is a uniform-resolution grid code operating almost entirely on GPUs.

Primary Citations: [63]

chombo

Index Type: grid

Comments: None

Usage Citations: [64,65,66]

eagle

Index Type: particle

Comments: None

Usage Citations: [67,67,68,69]

enzo

Index Type: grid

Comments: Enzo was the very �rst code supported by yt, and while many remnants of that have been
removed, many still remain. During the development of yt 3.0 in particular, many “enzo-isms” were
removed; however, as Enzo uses a patch-based grid data format, much of the naming conventions for
grid objects still mirror those in use in Enzo. These include names such as GridLeftEdge and
ActiveDimensions (which refers to the dimensions not including ghost zones).

There are several ‘sub-frontends’ within the Enzo frontend; these include dedicated 1D and 2D
readers, as well as historical frontends (of varying functionality) for reading HDF4, ‘unpacked’ HDF5
and other sub-dialects of Enzo.

Primary Citations: [70]

Usage Citations: [46,71,72,73,74,75]

enzo_e

Index Type: grid

Comments: Enzo-E is a nearly full-rewrite of the Enzo infrastructure designed for emerging and future
architectures.

Usage Citations: [76]

exodus_ii

Index Type: unstructured mesh

Comments: Exodus II, and its output in NetCDF4 format, was the initial driver for higher-order
unstructured mesh support in yt. The original driver for developing this format was for simulations of
nuclear reactors.

�ts

Index Type: grid

Comments: None

�ash

Index Type: grid

Comments: FLASH is a block-re�nement adaptive mesh re�nement code used in many di�erent
�elds, including astrophysics and high-energy density physics.

Usage Citations: [77,78,79,80,81,82]

gadget

Index Type: particle

Comments: None

Usage Citations: [83]

gadget_fof

Index Type: particle

Comments: Halo �nding

gamer

Index Type: grid

Comments: None

Primary Citations: [84]

gdf

Index Type: grid

Comments: Custom built for yt

gizmo

Index Type: particle

Comments: None

Usage Citations: [46,85]

halo_catalog

Index Type: particle

Comments: None

http_stream

Index Type: particle

Comments: None

moab

Index Type: unstructured mesh

Comments: None

nc4_cm1

Index Type: grid

Comments: None

open_pmd

Index Type: particle

Comments: None

owls

Index Type: particle

Comments: None

owls_sub�nd

Index Type: particle

Comments: None

ramses

Index Type: octree

Comments: None

Usage Citations: [46,86,87,88,89,90,91]

rockstar

Index Type: particle

Comments: None

sdf

Index Type: particle

Comments: None

Usage Citations: [92]

sph

Index Type: particle

Comments: A base frontend from which other SPH-type frontends can be de�ned.

stream

Index Type: multi

Comments: None

Usage Citations: [93,94]

swift

Index Type: particle

Comments: None

Primary Citations: [95]

Usage Citations: [96,97]

tipsy

Index Type: particle

Comments: None

Usage Citations: [98,99]

ytdata

Index Type: particle

Comments: An internal frontend for re-loading saved data and derived data

Usage Citations: [100]

parthenon

Index Type: grid

Comments: Parthenon is a performance portable block-structured adaptive mesh re�nement
framework and the basis for various downstream codes such as AthenaPK, Phoebus, or KHARMA.

Primary Citations: [101]

The primary method by which researchers interact with their data in yt is via visualization; from the
standpoint of the library, however, this is a side-e�ect of the various analysis, regularization and data-
processing algorithms that are implemented within yt . Nearly all of the visualization that is done
using yt utilizes the matplotlib library for actual deposition of pixels into an image format, although
all of the input to that deposition is conducted by yt . Making this distinction is important, because it
underscores the relationship between the di�erent libraries and how they exist in the ecosystem of
scienti�c software; yt does not replace matplotlib, but rather, augments it by providing a grammar
of analysis of volumetric data and de�ning how that grammar is translated into visual representations
as presented by matplotlib.

CC: discuss ray traversal for patch-based datasets + oct-based datasets.

Pixelizing Variable-Mesh Objects

The results of either projecting or slicing through a logically-cartesian �nite volume dataset is
represented in yt as a collection of pixel positions and widths. These objects, hereafter referred to
as exposing the “variable mesh” interface (as originated in HippoDraw), are not typically suitable for
direct visualization. Many visualization libraries, including matplotlib, would necessarily regard these
as collections of patches of �xed size, supplying them to the underlying engine. To optimize for
repeated rendering, yt provides its own “pixelization” routines that take advantage of the input data
structures. These “pixelizers” (or “rasterizers”) can account for periodic data, variable resolution,
overlapping and disjoint datasets, and non-Cartesian coordinate systems.

The pixelizers in yt are implemented in Cython, and they accept an input “image plane” bu�er (with
extent) as well as the variable mesh to be deposited. Pixelizers exist for cartesian coordinates,
cylindrical and spherical coordinates, o�-axis cartesian planes, and for the Mollweide orthographic
projection. Each of these pixelizers follows a roughly identical process for depositing source pixels into
the image plane. The outer loop is over the input pixels, , composed of , where
and refer to the coordinate system; in practice this means they may actually represent the , , or
other coordinates.

1. Compute left and right edges of the bounding box for this pixel in the resolution of the image plane
2. Iterate over the �rst image plane coordinate from the left edge to the right edge of the bounding

box
3. Iterate over the second image plane coordinate from the left edge to the right edge of the

bounding box
4. Map from the coordinate system to the image plane and deposit

pi xi, yi, dxi, dyi, vi x
y r θ ϕ

v

In practice, this is a fast operation, as long as the inner loops are su�ciently well determined; for
instance, when depositing an input pixel with a width of into an image plane where the pixel width
corresponds to a width of , only pixels (with a high-degree of sequential ordering) have to be
iterated over. The spherical and cylindrical pixelization routines operate similarly, but are somewhat
degraded by a lower degree of locality in the �nal mapping from coordinate system to image plane.

Recent work has been done to port the pixelization routines to Rust and compiling these to
WebAssembly, resulting in the development of the Widgyts project. Widgyts provides a browser-side
Jupyterlab interface to the pixelization routines, enabling extremely low-latency exploration of
datasets.

Higher-Order Unstructured Mesh Elements

Software Volume Rendering

The volume rendering is based on classical concepts for rendering 3D objects, and relies on the notion
of a scene, a camera and an object to render. The object to render can be any data container of
supported AMR datasets (either patch-based and octree-based datasets). The implementation of the
volume rendering is based on integrating a transfer function along individual “rays.” By de�ning a
traversal function, cells can be ordered and a sampling function and accumulation can be applied to
them. Below, we describe the traversal operations, and then the di�erent “sampling” operations that
can be applied.

Conceptually, it is easies to think about this as constructing a global “ordering” of the cells, and then
an in-order application of the sampler function with a�liated ray-speci�c data storage. In reality,
however, these operations are interleaved and decomposed to enable task- and data-based
parallelism. Data is distributed to di�erent processors wherever possible based on di�erent
decomposition strategies, and within the traversal algorithms OpenMP parallelism is utilized to allow
for individual rays to be integrated simultaneously. Typically, multiple “sampling points” are identi�ed
within each element to be sampled; the default number is 5. We have found that the image quality
improves somewhat as this number is increased, as the interpolation allows for �ner-grained
variation, but 5 is typically su�cient for all but the highest resolution data and highest-gradient data.

Lenses for Volume Rendering

In addition to specifying traversal algorithms, the software volume rendering in yt relies on the
concept of “lenses.” A lens, in yt terminology, is a descriptive object from which emanate the rays that
are integrated. The traditional lens is that of the perspective projection, wherein a plane of rays are
sent outward. The simplest lens, however, is that of a plane-parallel set of rays, each of which is
emitted by an individual pixel with constant direction. Additional lenses yt provides include a stereo
projection lens (for stereoscopic 3D volume rendering), a �sheye lens (for hemispheric rendering
suitable for planetarium domes), a spherical lens (for spherical rendering suitable for full-sphere
projections (such as for “ YouTube videos), and the stereoscopic spherical lens.

Each of these lens objects provides a functional form of ray direction and origin. In some cases, an
inverse function can be provided, which in some cases enables the traversal function to more
intelligently check intersection and reduce computation time.

Patch-based ray traversal

Unlike taking standard “projections” of datasets, the process of volume rendering requires that
elements be traversed in order, accumulating values that may be reliant on previous values. While this

w

w/16 162

360∘

is straightforward to implement for grids [102], in situations where there are overlapping sets of
values the process must be handled more carefully.

To ensure that cells are traversed in-order, and to ensure that only the highest-resolution cells are
used in cases where grids overlap, we decompose the grid hierarchy into a kD-tree. To construct the
kD-tree, each grid at the root level is added to the tree. Wherever these grids include “child” grids (i.e.,
grids that include higher-resolution data that overlaps with the grids) a cutting plane is inserted in the
kD-tree such that the child grid is isolated. This process is then applied recursively until all of the grids
in the dataset (or its data subselection) have been added. By inserting cutting planes at child-grid
boundaries, the tree can be speci�ed to include only “leaf” node data, thus ensuring that any traversal
will only include the highest-resolution data available, and thus can be traversed in order.

kD-trees also provide so-called “viewpoint traversals,” which allows the grids to be ordered in either
front-to-back or back-to-front order. These traversals can also be ordered to allow for radially-
emanating traversals, for such cases as hemispheric renderings.

Octree ray traversal

Casting rays through an octree can be achieved e�ciently by relying on the octree structure. In order
to abstract away the underlying layout of the data, we �rst construct an octree that contains all leaf
cells in the data container. We store all cells as octs with no children, and mark them with their
position within the data container, going from to . Octs that are inserted in the process of
building the tree are not marked nor indexed. We also compute the vertex-centered data for all cells
in the container. Note that, contrary to the octree utilized to index the data from octree datasets, this
octree may span multiple domains and contains all levels from the root level (that contains a single
oct the size of the simulation domain) all the way down to the leaf cells. We then cast rays o� the
camera, and for each ray, we compute the ordered list of the cells it intersects with together with
the intersection points along the ray [103]. In the following, we will write the coordinate along the ray
as , with the camera located at . In general the tree may contain holes (this may happen if the
data container is a region selector), so that the exit coordinate out of a cell may not coincide with the
entry coordinate through the next cell. In practice, we solve this by storing for each cell both the entry
and exit coordinates of the ray.

The algorithm relies on the fact that if a ray passes through an oct and intersects with its six faces at
coordinate along the ray (on entry) and (on exit), then its intersection with the

inner cells’ faces can be computed explicitly from these six values and their half point
. This implies that each call to the algorithm only need

computing one division and a few simple arithmetic comparisons. It also uses the fact that for a given
oct, we can compute which cell the ray will intersect with �rst, and from any given cell, which cell the
the ray will intersect next.

The algorithm then works as follows. If the ray does not intersect with the root oct, then the algorithm
returns an empty list of cell crossed and values. Otherwise, initialize an empty list of cells traversed
and -values. a) Find the intersection of the ray with all six faces of the oct. b) If the current oct is
marked, store the entry and exit -values and the index of the oct in their respective list and return. c)
If the current oct is not marked, �nd the �rst cell the ray intersects with and call the algorithm
recursively (starting at step a) with the oct contained in the cell, if any). d) Find the next cell within the
oct. If there is no next cell, return. Otherwise, call the algorithm recursively (starting at step a) with the
oct contained in the cell, if any) then go back to d). On exit of the algorithm, we then have a list of cells
and -values. For each cell in the list, we then call the sampler with the vertex-centered values and the
entry and exit coordinates.

0 Ncell − 1

N

t t = 0

txi, tyi, tzi txo, tyo, tzo

(txi + txo)/2, (tyi + tyo)/2, (tzi + tzo)/2

t
t

t

t

An example of the volume rendering of a galaxy in a zoom-in cosmological simulation made with
RAMSES is shown on Figure 26.

Figure 26: Volume rendering of gas density isocontours around a galaxy in a cosmological zoom-in simulation
performed with RAMSES. Adapted from [104].

Sampling functions

As a ray passes through each sampling point, we apply a sampling function. In the yt software volume
renderer, these cython subclasses of the ImageSampler base class. Each de�nes a setup process
and a sample process. Once a ray arrives at a sampling point (for instance, as it walks across a grid
and encounters values) the sampler is called with the data it is accessing, information about the ray,
the “enter” and “exit” parameters of the sample region, and the accumulated data so far.

Each ImageSampler object implements a di�erent method of integration through the volume.
Below, we discuss each in turn. To do so, we apply the convention that our volume rendering ray-

casting starts at a position de�ned by the parameter , starting at the position and
terminates at . Field values are taken as , and the distance through with a ray has
passed is de�ned as the path length.

Projection Sampler

This sampler object conducts a simple integration through the domain.

Because the sampling function includes no dependence on previous values, it can be sampled
completely independently and out of order. This allows for much simpler data-based parallelism.
There are two formulations of this sampler in yt; the �rst is a piecewise-linear interpolation scheme,
wherein the �eld is assumed to be constant within each sampling volume. This method requires
neither vertex-centered data nor multiple sampling points and is considerably faster to conduct. The
second method available, which is the default, is that of an interpolated projection. This sampler
requires vertex-centered data and utilizes multiple samples. Because the arithmetic is reasonably
simple and the data can be supplied in any order, it is still reasonably fast to conduct.

This sampler function operates independently of color channels, exclusively in �oating-point space.
This allows colormapping to be conducted at the end of the process and allows for high dynamic
range beyond that typically enabled by RGBA channels.

Transfer Function Sampler

The transfer function sampler is the most complex of the sampling functions available in yt, as it
a�ords the most �exibility. Unfortunately, this also results in a cumbersome and di�cult-to-describe
setup process, wherein the simple operations are straightforward to accomplish but the more
complex operations are subject to trial-and-error.

The transfer function sampler is designed for constructing images; as such, it provides integration for
up to six channels of data. Typically, this is used in the four-channel mode, corresponding to red,
green, blue and alpha (RGBA) data. (It is important to note, however, that this is not by any means the
only mechanism that these could be assigned; the values are accumulated in �oating point and could
correspond to any output data, not just these three colors and one alpha.) In six-channel mode,
typically the channels are for red, green, blue, and a corresponding alpha channel for each of those
colors, accumulated independently.

The transfer function is set up around the concept of “�eld interpolation tables.” These are 1D arrays,
typically 256 elements, that include �oating point values as well as concrete bounds in data-space.
These tables provide a mapping , where is a local �eld value, as well as an optional
“weight” value drawn from a second table. Careful construction of these tables can produce volume
renderings via isocontours, where speci�c values in �eld space are highlighted with distinct colors.
Indeed, this is the most common method of applying this sampler, as it allows a straightforward way
of seeing “through” the outer layers and viewing nesting structures simultaneously.

We use notation for the input values for a given channel (where is one of) and for

the output. With the sampled �eld value () and optional weight �eld value () we can then
de�ne a sample, for each channel including alpha. we compute the updated values for each
sampling point via:

t →x(t0) ≡ →x0

→x(t1) ≡ →x1 f(→x)

v(→x(t1)) = ∫
t1

t0

f(x, y, z)dl

f(v) → u v

C 0
i i R,G,B,A C 1

i

f(t) w(t)
Si

This is the case for “grey” opacity. In the use case of di�ering opacity for each channel, we modify this
such that we utilize additional alpha channels for each primary channel. is then de�ned individually
for each output channel.

This particular set of transfer functions, with what amounts to multi-channel, multi-�eld sampling in
both output and opacity, can be speci�ed to perform complex functions such as variable scattering,
di�erent weights for di�erent channels, etc.

Hardware-accelerated Volume Rendering

Software volume rendering, as described above, provides a number of a�ordances for careful
visualization. Speci�cally, as the code and kernels are written in languages that are similar to more
traditional languages such as C and C++, the barrier to entry for describing a new sampling system
can be lower. That being said, when examining responsiveness, software volume rendering is rarely –
if ever – competitive with hardware-based volume rendering, such as that accelerated through
graphics processing units (GPUs) and using OpenGL, Metal, Vulkan, or one of the higher-level
platforms for graphics. Fluid interactivity is essentially inaccessible for software volume rendering
except on the smallest of datasets. And yet, �uid interactivity enables much deeper exploration of the
parameter space of visualization, as well as the ability to immerse oneself in data.

To support more interactive visualization (in addition to that described in ??) a basic system for
conducting hardware-accelerate, OpenGL-based visualization of yt -supported data has been
developed in an external package, yt_idv . yt_idv is built on PyOpenGL and provides support for
grid-based, particle-based and �nite element datasets, with a heavy emphasis on the grid-based
datasets. While the process of volume rendering is interesting, with many di�erent fascinating areas
of inquiry and opportunities for optimization, yt_idv is notable for its architecture more than its
algorithms and optimization.

yt_idv is built using the Traitlets library, and utilizes the immediate-mode graphical user interface
system “Dear ImGUI” for presenting a user interface. This allows for the system to be largely data-
driven; frame redraws are only executed when a parameter changes (such as the camera path,
transfer function, etc) and new parameters for the visualization can be easily exposed to the user
interface. Furthermore, this allows shaders to be dynamically recompiled only as necessary.

In addition to this, the shaders themselves are speci�ed in a con�guration �le that links GLSL source
�les into multi-component shaders, allowing declarative construction of shader pipelines and
improving interoperability. For ray-casting routines, only a small kernel needs to be modi�ed to
change the functionality. This allows the relatively complex process of casting rays through multiple
volumes to be hidden, much as described in 1.11.41. Annotations can be added simply, and an event
loop has been enabled so that users can interact with the running visualization interface through
IPython.

While this project includes a number of additional features designed for accessibility of data and in-
depth coupling of visualization with quantitative analysis, they extend beyond the scope of this paper.

Unitful Arrays and Quantities

C 0
i
at ← max(1 − dt ∗ SA, 0)

C 1
i

← Siδt + atC
0
i

at

https://github.com/yt-project/yt_idv/

At a basic level, yt is an engine for converting data created by a simulation code into a physically
meaningful result. Attaching physical units to simulation data makes it possible to perform
dimensional analysis on the simulation data, adding new opportunities for catching errors in a data
processing pipeline. In addition, it becomes straightforward to convert data from one unit system to
another.

In yt 4.0 we handle units in an automatic fashion, with a symbolic units system. Originally part of
yt itself since version 3.0, the unit system has now been split o� into a standalone package, unyt

[105]. unyt leverages the symbolic math library sympy in combination with NumPy. In what follows,
we will refer to unyt when describing the unit implementation, unless we are describing a yt -
speci�c extension.

Instead of returning a NumPy ndarray when users query yt data objects for �elds, we return a
unyt_array , a subclass of ndarray . unyt_array preserves ndarray ’s array interface, including

deep and shallow copies, broadcasting, views, and mathematical operations. Augmenting ndarray ,
unyt_array attaches unit metadata to the array data, enabling runtime checking of unit consistency

in arithmetic operations between unyt_array instances, and making it trivial to compose new units
using algebraic operations.

As a trivial example, when one queries a data object (here given the generic name dd) for the density
�eld, we get back a unyt_array , including both the simulation data for the density �eld, and the
units of the density �eld, in this case :

One of the nicest aspects of the unit system is that the symbolic algebra for unitful operations is
performed automatically by sympy :

unyt_array is primarily useful for attaching units to NumPy ndarray instances. For scalar data,
we have created the unyt_quantity class. unyt_quantity is a subclass of unyt_array with the
requirement that the “array data” associated with the instance is a single scalar value.
unyt_quantity is primarily useful for physical constants and ensures that the units are propagated

correctly when composing quantities from arrays, physical constants, and unitless scalars:

In what follows, we will refer to both array and scalar quantities as arrays generically for the purpose
of brevity.

g/cm3

>>> dd['density']
unyt_array([4.92e-31, 4.94e-31, 4.93e-31, ...,
 1.12e-25, 1.59e-25, 1.09e-24], 'g/cm**3')

>>> print(dd['mass']/dd['cell_volume'])
 [4.92e-31 4.94e-31 4.93e-31 ...
 1.12e-25 1.59e-25 1.09e-24] g/cm**3

>>> from unyt import boltzmann_constant
>>> print(dd['temperature']*boltzmann_constant)
[1.28e-12 1.29e-12 1.29e-12 ...
 1.63e-12 1.59e-12 1.40e-12] erg

Basic implementation

The unit implementation in unyt is based upon the notion of dimensionality. unyt has 8 base
dimensions: mass , length , time , temperature , current_mks , luminous_intensity ,
angle , and logarithmic . The unitless dimensionless dimension is also technically a base

dimension, although a trivial one. This facilitates the creation of dimensionless unit symbols to
represent quantities like metallicity that are formally dimensionless, but convenient to represent in a
unit system. We provide sympy Symbol objects for the base dimensions. The dimensionality of all
other units are sympy Expr objects made up of the base dimension objects and the sympy
operation objects Mul and Pow .

This collection of dimensions is admittedly somewhat idiosyncratic. In the SI system of units, there is
no base dimension of angle (the radian is dimensionless formally de�ned as meter/meter), and there
is a dimension of “amount of substance”, for which the base unit is mole, but in yt the mol unit is
treated as dimensionless. The logarithmic dimension is a special case which will be described in
more detail below.

For each dimension, we choose a base unit. The default base units for the �rst six dimensions
mentioned above in unyt are from the SI system: kilograms, meters, seconds, kelvin, ampere, and
candela. The default base unit for the angle dimension is radian, and the default base unit for the
logarithmic dimension is the “neper”, which is a logarithmic unit for ratios of quantities such as

�eld strenth or power. All other units can be described as combinations of these base units along with
a conversion factor to equivalent base units.

For historical and practical reasons, the default base units in yt itself are the “Gaussian” centimeters-
grams-seconds (CGS) system, where grams and centimeters serve as the di�erent base units for mass
and length, the other base units remaining the same as SI, though formally there are no independent
base units for luminous intensity or current in CGS systems. CGS was chosen for yt to stay
consistent with the rest of the yt codebase prior to yt 3.0 and to re�ect the standard practice in
astrophysics.

In any case, using a physical unit system makes it possible to compare quantities and arrays
produced by di�erent datasets, possibly with di�erent conversion factors to CGS and to code units.
We go into more detail on this point below, where we describe the di�erent unit systems in yt.

Let us �rst take some common units as examples: gram (g), erg (erg), and solar mass per cubic
megaparsec (Msun / Mpc**3). g is an “atomic” CGS base unit, erg is an atomic unit in CGS, but is
not a base unit, and Msun / Mpc**3 is a combination of atomic units, which are not in CGS, and one
of them even has an SI pre�x. The dimensions of g are mass and the CGS conversion factor is 1. The
dimensions of erg are mass * length**2 / time**2 and the CGS conversion factor is 1. The
dimensions of Msun / Mpc**3 are mass / length**3 and the CGS conversion factor is about

.

We use the UnitRegistry class to de�ne all valid atomic units. All unit registries contain a unit
symbol lookup table containing for each unit in a tuple the conversion factor to SI units, the
dimensionality, the additive o�set for the unit, a string representing how the unit should be displayed
in plots and other media, and a boolean dictating whether the unit is SI-pre�xable. Here is what it
would look like with the above units:

6.8 × 10−41

Note that we only de�ne atomic units here. There should be no operations or SI pre�xes in the
registry symbol strings. When we parse non-atomic units like Msun/Mpc**3 , we use the registry to
look up the symbols. The unit system in yt knows how to handle units like Mpc by looking up unit
symbols with and without pre�xes and modify the conversion factor appropriately. Note also that in
most cases the “additive o�set” will be 0–it applies mainly to temperature scales like Fahrenheit and
Celsius where the zero-point of the scale are not equivalent between the two scales, and are also not
equivalent to “zero thermal energy,” for which the relevant temperature units are Rankine and Kelvin,
respectively.

We construct a Unit object by providing a string containing atomic unit symbols, combined with
operations in Python syntax, and the registry those atomic unit symbols are de�ned in. We use
sympy ’s string parsing features to create the unit expression from the user-provided string. Each
Unit object also has its own unit sympy Expr object, a dimensionality Expr object, a
UnitRegistry instance, a scalar conversion factor to SI units, additive o�set value, and display

representation. Among other methods, Unit de�nes the mul , div , pow , and eq operations with
other unit objects, making it easy to compose compound units algebraically.

The UnitRegistry class provides methods which allows users to add , remove , and modify
atomic unit de�nitions present in UnitRegistry objects. In general, unit registries should only be
adjusted inside of a code frontend, since otherwise quantities and arrays might be created with
inconsistent unit metadata. Once a Unit object is created, it will not receive updates if the original
unit registry is modi�ed.

Code units

When a Dataset object is created, it will itself instantiate and set up a UnitRegistry class (stored
in its unit_registry attribute) that contains a full set of units that are de�ned for the simulation.
This registry includes not only the aforementioned concrete physical units like cm or K , but also unit
symbols that correspond to the unit system used internally in the simulation. These units are
instantiated via the concept of “code units”, which are tightly coupled to on-disk parameters.
Examples of such units are code_length , code_mass , code_time , code_velocity ,
code_density , code_magnetic , code_pressure , and code_metallicity . When creating a
Dataset ’s UnitRegistry , yt is able to also determine conversions between these units and

physical units in both directions. Code units therefore preserve dimensionality: an array or quantity
that has units of cm will be convertible to code_length , for example, and vice-versa.

On-disk �elds are presented in these unconverted code units. To obtain on-disk data, a user need only
query a data object using an on-disk �eld name:

{
 "g": (1.0e-3, dimensions.mass, 0.0, r"\rm{g}", True),
 "erg": (1.0e-7, dimensions.energy, 0.0, r"\rm{erg}", True),
 "Msun": (mass_sun_kg, dimensions.mass, 0.0, r"\rm{M}_\odot", False),
 "pc": (m_per_pc, dimensions.length, 0.0, r"\rm{pc}", True),
 "degC": (1.0, dimensions.temperature, -273.15, r"^\circ\rm{C}", True),
}

Here, the �rst data object query is returned in code units, while the second is returned in CGS units.
This is because ("enzo", "Density") is an on-disk �eld, while ("gas", "density") is an
internal yt �eld, aliased to the former.

In the set_code_units method of the Dataset base class, the prede�ned code_mass ,
code_length , code_time , code_velocity , and code_magnetic symbols are adjusted to the

appropriate values, and length_unit , time_unit , mass_unit , velocity_unit , and
magnetic_unit attributes are attached to the Dataset instance. If there are frontend-speci�c

code units, they should also be de�ned in subclasses by extending this function.

When code units are set up for a Dataset , unyt_quantity instances corresponding to these code
units are also set up and added as attributes to the Dataset . Examples are length_unit ,
time_unit , mass_unit , and temperature_unit :

Optionally, velocity_unit , density_unit , pressure_unit , and magnetic_unit may be
de�ned as well, if the units for these �elds cannot be inferred from the mass, length, and time units.

Handling cosmological units

A special case of astrophysical hydrodynamical simulations are cosmological simulations, which
attempt to simulate the evolution of structure on cosmological length and time scales. Such
simulations use “comoving coordinates”, which is a notion of length that does not change with the
expansion of the universe, in contrast to normal physical distances which do.

If we detect that we are loading a cosmological simulation performed in comoving coordinates, extra
comoving units are added to the dataset’s unit registry. Comoving length unit symbols are still named
following the pattern <length symbol>cm , i.e. Mpccm . The symbol is treated as a base unit, h ,
which defaults to unity. The Dataset updates the h symbol to the correct value when loading a
cosmological simulation.

>>> import yt
>>> ds = yt.load("Enzo_64/DD0043/data0043")
>>> dd = ds.all_data()
>>> print(dd["enzo", "Density"])
[6.74e-02 6.12e-02 8.92e-02 ...
 9.09e+01 5.66e+01 4.27e+01] code_mass/code_length**3
>>> # ("gas", "density") is the same field, but presented in physical units
>>> print(dd["gas", "density"])
[1.92e-31 1.74e-31 2.54e-31 ...
 2.59e-28 1.61e-28 1.22e-28] g/cm**3

>>> import yt
>>> ds = yt.load("Enzo_64/DD0043/data0043")
>>> print(ds.length_unit)
128 Mpccm/h
>>> print(ds.length_unit.in_cgs())
5.555172850264421e+26 cm

h

The change of physical length is illustrated by the following example, of two datasets from the same
simulation but at di�erent times/scale factors/redshifts:

Unit systems

As noted above, the default unit system in yt for almost all Dataset s is the Gaussian CGS system.
However, yt also includes other unit systems which can be speci�ed, in which case all �elds loaded
from a Dataset will be converted from their code units to this set of units. The available unit
systems in yt are:

"cgs" : “Gaussian” centimeter-grams-seconds
"mks" : The SI unit system, or meters-kilograms-seconds-amperes
"imperial" : The “imperial” unit system, or the “US customary” system, incorporating miles,

pounds, seconds, etc.
"galactic" : A unit system appropriate for studies of systems on galactic or extragalactic scales,

with length units of kiloparsecs, mass units of solar masses, and time units of megayears, etc.
"solar" : A unit system appropriate for solar system objects, with length units of astronomical

units, mass units of Earth mass, and time units of years.
"geometrized" : A unit system appropriate for general relativistic calculations, in which = = 1.
"planck" : A unit system in Planck units where = = = = 1.

Additionally, each Dataset instance has its own "code" unit system.

To load a dataset with a di�erent unit system, simply pass a valid value to the unit_system
keywoard argument when calling yt.load :

>>> import yt
>>> ds1 = yt.load('Enzo_64/DD0002/data0002')
>>> ds2 = yt.load('Enzo_64/DD0043/data0043')
>>> print(ds1.length_unit, ds2.length_unit)
128 Mpccm/h, 128 Mpccm/h
>>> print(ds1.length_unit.in_cgs())
6.26145538088e+25 cm
>>> print(ds2.length_unit.in_cgs())
5.55517285026e+26 cm

G c
G c ℏ kB

At the time of writing, two frontends in yt use the "mks" unit system by default, and one leaves the
units in “code” units by default.

It is also possible to de�ne a new unit system entirely, with required arguments of a name for the
system, and length, mass, time, temperature, and angular units:

>>> import yt
>>> ds = yt.load("Enzo_64/DD0043/data0043", unit_system="mks")
>>> dd = ds.all_data()
>>> print(dd["gas","density"])
[1.92555234e-28 1.74617139e-28 2.54742946e-28 ... 2.59560386e-25
 1.61728874e-25 1.22032913e-25] kg/m**3
>>> ds2 = yt.load("Enzo_64/DD0043/data0043", unit_system="galactic")
>>> dd2 = ds2.all_data()
>>> print(dd2["gas","density"])
[2.84511447e+00 2.58006879e+00 3.76397373e+00 ... 3.83515418e+03
 2.38963725e+03 1.80310657e+03] Msun/kpc**3
>>> ds3 = yt.load("Enzo_64/DD0043/data0043", unit_system="code")
>>> dd3 = ds3.all_data()
>>> print(dd3["gas","density"])
[6.74992726e-02 6.12111635e-02 8.92988636e-02 ... 9.09875931e+01
 5.66932465e+01 4.27780263e+01] code_mass/code_length**3

>>> from unyt import UnitSystem
>>> atomic_unit_system = UnitSystem('atomic', 'nm', 'mp', 'fs', 'nK', 'rad')
>>> atomic_unit_system['energy'] = 'eV'
>>> atomic_unit_system
atomic Unit System
 Base Units:
 length: nm
 mass: mp
 time: fs
 temperature: nK
 angle: rad
 current_mks: A
 luminous_intensity: cd
 logarithmic: Np
 Other Units:
 energy: eV
>>> print(atomic_unit_system)
atomic
>>> atomic_unit_system['number_density']
nm**(-3)
>>> atomic_unit_system['angular_momentum']
mp*nm**2/fs

Note that for dimensions not speci�ed explicitly in the call to UnitSystem (in this example number
density and angular momentum), their units were derived automatically. Now, this user-de�ned unit
system can be used in yt :

Unit conversions

Aside from the ability to carry units through calculations, the other basic need for having a units
implementation in yt is to be able to perform conversions of arrays from one unit to another of the
same dimension. Creating a new array or quantity from an existing one can be done using the
in_units method (or the to method, which is a convenient alias):

Conversions to other unit systems can also be achieved with the methods in_cgs for Gaussian CGS
units, in_mks for SI units, and the more general in_base for conversion to any valid unit system
(see Unit systems).

>>> ds4 = yt.load("Enzo_64/DD0043/data0043", unit_system="atomic")
>>> dd4 = ds4.all_data()
>>> print(dd4["gas","density"])
[1.15045218e-28 1.04327815e-28 1.52200266e-28 ... 1.55078523e-25
 9.66275139e-26 7.29105244e-26] mp/nm**3

>>> import yt
>>> ds = yt.load("GasSloshing/sloshing_nomag2_hdf5_plt_cnt_0100")
>>> sp = ds.sphere("c", (100.0, "kpc"))
>>> print(sp["gas","velocity_x"])
[-4793397. -5297494.5 -4997635. ... 10608344. 10382381. 10529207.] cm/s
>>> print(sp["gas","velocity_x"].in_units("mile/hr"))
[-107225.23711525 -118501.57704009 -111793.91105941 ... 237301.89692198
 232247.24856836 235531.65264853] mile/hr
>>> print(sp["gas","pressure"])
[1.62223415e-10 1.60880725e-10 1.62334618e-10 ... 1.54101079e-10
 1.52756530e-10 1.53220436e-10] dyn/cm**2
>>> print(sp["gas","pressure"].to("J/m**3"))
[1.62223415e-11 1.60880725e-11 1.62334618e-11 ... 1.54101079e-11
 1.52756530e-11 1.53220436e-11] J/m**3

To convert an array in-place instead of making a copy, use convert_to_units :

Naturally, attempting to convert an array to units with a di�erent dimension raises an error (in most
cases, see below for exceptions):

>>> import unyt as u
>>> import numpy as np
>>> l = np.array([10, 100, 100])*u.Mpc
>>> print(l.in_cgs())
[3.08567758e+25 3.08567758e+26 3.08567758e+26] cm
>>> print(l.in_mks())
[3.08567758e+23 3.08567758e+24 3.08567758e+24] m
>>> print(l.in_base("imperial"))
[1.01236141e+24 1.01236141e+25 1.01236141e+25] ft
>>> print(l.in_base("geometrized"))

>>> momentum_y = sp["gas","mass"]*sp["gas","velocity_y"]
>>> print(momentum_y)
[1.45031068e+47 1.40467746e+47 1.42059875e+47 ... 1.01206589e+47
 9.94539437e+46 1.06969711e+47] cm*g/s
>>> momentum_y.convert_to_units("Msun*kpc/Myr")
>>> print(momentum_y)
[745945.76032301 722474.98923595 730663.86660289 ... 520541.05697294
 511526.58818102 550182.82006007] Msun*kpc/Myr

>>> print(momentum_y.to("degC"))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/array.py", line 947, in to
 return self.in_units(units, equivalence=equivalence, **kwargs)
 ^^^
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/array.py", line 874, in in_units
 (conversion_factor, offset) = self.units.get_conversion_factor(
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/unit_object.py", line 694, in get_conversion_factor
 return _get_conversion_factor(self, other_units, dtype)
 ^^
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/unit_object.py", line 939, in _get_conversion_factor
 raise UnitConversionError(
unyt.exceptions.UnitConversionError: Cannot convert between 'Msun*kpc/Myr'

(dim '(length)*(mass)/(time)') and '°C' (dim '(temperature)').

Equivalencies

In certain circumstances, conversion from one quantity to another with di�erent dimensions is
desired. This is the case for a number of frequently encountered, physically-motivated
transformations which involve physical constants, some examples of which are:

Conversions between temperature and energy via
Conversions between wavelength, frequency, and energy for light via

Conversions between mass and energy via
Conversions between density and number density via

As described above, conversions between quantities in di�erent units is generally not allowed, but
these special cases can be handled using unit equivalencies in yt . This is done using the
to_equivalent method, which takes the unit in a di�erent dimension that you want to convert to,

and the equivalence you would like to use:

These equivalencies are straightforward–more information may be required in other cases. For
example, to convert temperature to sound speed via , there are two

parameters which may be optionally changed, and , which are the ratio of speci�c heats and the
mean molecular weight, respectively:

For convenience, the same operations can actually be carried out simply using the to method
described above:

E = kBT
E = hν = hc/λ

E = mc2

n = ρ/(μmp)

>>> import unyt as u
>>> kT = 5.0*u.keV
>>> # converting kT (energy) to T (temperature)
>>> print(kT.to_equivalent("K", "thermal"))
34813557.843240075 K
>>> # converting kT (energy) to Angstrom (wavelength)
>>> print(kT.to_equivalent("angstrom", "spectral"))
4.132806438406553 Å
>>> # print the proton's compton wavelength in picometers
>>> print(u.mp.to_equivalent("pm", "compton"))
0.00132141 pm

cs = √γkBT/(μmp)
γ μ

>>> import unyt as u
>>> T = 1.0e6*u.K
>>> # default gamma = 5/3 and mu = 0.6
>>> print(T.to_equivalent("km/s", "sound_speed"))
151.372499274441 km/s
>>> print(T.to_equivalent("km/s", "sound_speed", mu=1.0))
117.25263375274085 km/s
>>> print(T.to_equivalent("km/s", "sound_speed", gamma=4./3.))
135.39167932067505 km/s

Conversions between electromagnetic units in di�erent systems

Conversions between di�erent electromagnetic units require special handling in many cases. The
reason for this is that the units for many electromagnetic quantities do not have the same dimensions
between the Gaussian CGS and the SI unit systems. For illustration, let us consider the units of
magnetic �eld strength. Super�cially, it would appear that there is a simple conversion between the
cgs units of gauss () and the SI units of tesla (), since numerically . However, if we
examine the base units, we �nd that they have di�erent dimensions:

The reason for this has already been noted above: the SI system has a base unit of current (the
ampere), and all other electromagnetic units in SI are derived from it and combinations of other units.
unyt handles conversions between electromagnetic quantities with atomic units between CGS and

SI systems, under the hood despite this di�erence:

>>> import unyt as u
>>> kT = 5.0*u.keV
>>> print(kT.to("K", "thermal"))
34813557.843240075 K
>>> T = 1.0e6*u.K
>>> print(T.to("km/s", "sound_speed", gamma=4./3.))
135.39167932067505 km/s

G T 1 G = 10−4 T

CGS :1 G = 1

SI :1 T = 1

√g

√cm ⋅ s

kg

A ⋅ s

Because it is more di�cult to handle non-atomic conversions easily, these will still raise errors:

>>> import unyt as u
>>> I = 10.0*u.A
>>> print(I.units.dimensions)
(current_mks)
>>> Icgs = I.to("statA")
>>> print(Icgs)
2997924580.0 statA
>>> print(Icgs.units.dimensions)
(length)**(3/2)*sqrt((mass))/(time)**2
>>> B = 1.0e-4*u.T
>>> print(B.units.dimensions)
(mass)/((current_mks)*(time)**2)
>>> Bcgs = B.to("G")
>>> print(Bcgs)
1.0 G
>>> print(Bcgs.units.dimensions)
sqrt((mass))/(sqrt((length))*(time))
>>> Vcgs = 1.0*u.statV
>>> print(Vcgs.units.dimensions)
sqrt((length))*sqrt((mass))/(time)
>>> Vsi = Vcgs.to("V")
>>> print(Vsi)
0.0033356409519815205 V
>>> print(Vsi.units.dimensions)
(length)**2*(mass)/((current_mks)*(time)**3)

For these cases, it is recommended to convert atomic electromagnetic units separately �rst in
equations, if necessary.

Physical Constants

unyt contains a large number of built-in physical constants and properties of astronomical objects
as unyt_quantity instances, which can be used in computations. The simplest way to use them is
to import them directly from the unyt namespace:

Here’s an example of using constants in a computation:

>>> import unyt as u
>>> # 3D current density in SI units
>>> J = 1.0*u.A/u.m**3
>>> # attempt to convert to the same quantity in Gaussian CGS units
>>> print(J.to("statA/cm**3"))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/array.py", line 947, in to
 return self.in_units(units, equivalence=equivalence, **kwargs)
 ^^^
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/array.py", line 874, in in_units
 (conversion_factor, offset) = self.units.get_conversion_factor(
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/unit_object.py", line 694, in get_conversion_factor
 return _get_conversion_factor(self, other_units, dtype)
 ^^
 File "/Users/jzuhone/mambaforge/envs/py311/lib/python3.11/site-

packages/unyt/unit_object.py", line 939, in _get_conversion_factor
 raise UnitConversionError(
unyt.exceptions.UnitConversionError: Cannot convert between 'A/m**3' (dim

'(current_mks)/(length)**3') and 'statA/cm**3' (dim
'sqrt((mass))/((length)**(3/2)*(time)**2)').

>>> from unyt import clight, kboltz, h, Mearth, G
>>> for const in [clight, kboltz, h, Mearth, G]:
... print(const)
299792458.0 m/s
1.3806488e-23 kg*m**2/(K*s**2)
6.62606957e-34 kg*m**2/s
6.045644495102106e+24 kg
6.67408e-11 m**3/(kg*s**2)

Some physical constants are represented by Greek letters or other characters–these can be imported
either using ASCII characters or their non-ASCII representations:

Creating unyt_array and unyt_quantity instances

Aside from converting an array to new units as described above, there are two further ways to create
new array and quantity objects: via a constructor, and by multiplying scalar data by a unit quantity.

Class constructor

The primary internal interface for creating new arrays and quantities is through the class constructor
for unyt_array . The constructor takes three arguments. The �rst argument is the input data, which
can be an integer, �oat, list, or array. The second argument, input_units , is a unit speci�cation
which must be a string or Unit instance. Last, users may optionally supply a UnitRegistry
instance, which will be attached to the array. If no UnitRegistry is supplied, a default unit registry
is used instead. Unit speci�cation strings must be algebraic combinations of unit symbol names, using
standard Python mathematical syntax (i.e. ** for the power function, not ^).

Here is a simple example of unyt_array creation:

In addition to the class constructor, we have also de�ned two convenience functions, quan , and
arr , for quantity and array creation that are attached to the Dataset class. These were added to

syntactically simplify the creation of arrays with the UnitRegistry instance associated with a

>>> import numpy as np
>>> from unyt import unyt_quantity
>>> from unyt import Msun, G
>>> d = unyt_quantity(1.0, "AU")
>>> T = np.sqrt(4.0*np.pi**2*d**3/(G*Msun)) # Kepler's third law
>>> print(T.to("yr"))
1.000033863000043 yr

>>> from unyt import σ_T, ε_0
>>> from unyt import eps_0, sigma_thomson # ASCII versions
>>> print(ε_0) # This is the vacuum permittivity constant
8.854187817620389e-12 A**2*s**4/(kg*m**3)
>>> print(σ_T) # This is the Thomson cross section
6.65245854533e-29 m**2
>>> print(σ_T == sigma_thomson)
True

>>> from unyt import unyt_array, unyt_quantity
>>> unyt_array([1, 2, 3], 'cm')
unyt_array([1, 2, 3]) cm
>>> unyt_quantity(3, 'J')
unyt_quantity(3, 'J')

dataset. These functions work exactly like the unyt_array and unyt_quantity constructors, but
pass the UnitRegistry instance attached to the dataset to the underlying constructor call. For
example:

The above example illustrates that the array is being created using ds.unit_registry , rather than
the default_unit_registry in yt .

Multiplication

New unyt_array and unyt_quantity instances can also be created by multiplying unyt_array ,
unyt_quantity , or Unit instances by float or ndarray instances. To make it easier to create

arrays using this mechanism, we have populated the unyt namespace with prede�ned Unit
instances that correspond to common unit symbol names. For example:

Importing and exporting units

Arrays from unyt can be exported and imported in a few di�erent ways.

Writing unyt_array s to disk

>>> import yt
>>> ds = yt.load("Enzo_64/DD0043/data0043")
>>> ds.arr([1, 2, 3], 'code_length').in_cgs()
unyt_array([5.55e+26, 1.11e+27, 1.66e+27], 'cm')

>>> from unyt import meter, gram, kilogram, second, joule
>>> kilogram * meter**2 == joule
True
>>> from unyt import m, kg, s, W
>>> kg*m**2/s**3 == W
True

>>> from unyt import kilometer
>>> three_kilometers = 3*kilometer
>>> print(three_kilometers)
3.0 km

>>> from unyt import gram, kilogram
>>> my_g = 1.0*gram
>>> my_kg = 1.0*kilogram
>>> print(my_g+my_kg)
1001.0 g
>>> print(my_kg+my_g)
1.001 kg
>>> print(my_kg/my_g)
1000.0 dimensionless

unyt_array s can be serialized to disk in either ASCII or HDF5 format. For ASCII, use unyt.savetxt
(with similar syntax as numpy.savetxt) to write one or more arrays:

and unyt.loadtxt to read them back in:

unyt_array s can be written to HDF5 format using the write_hdf5 method, where one can
optionally specify the HDF5 dataset and group where it can be stored:

and read back in using from_hdf5 :

Exporting unyt_array s to other unit packages

It is possible to export an unyt_array or an unyt_quantity to equivalent objects in two other
symbolic unit packages: Pint and AstroPy . To convert to a Pint Quantity object, the
to_pint method is used:

>>> import unyt as u
>>> a = [1, 2, 3]*u.cm
>>> b = [8, 10, 12]*u.cm/u.s
>>> c = [2, 85, 9]*u.g
>>> u.savetxt("sphere.dat", [a,b,c], header='My sphere stuff',
... delimiter="\t")

>>> vel, mass = u.loadtxt("sphere.dat", usecols=(1,2), delimiter="\t")

>>> # Store the "b" array to the dataset "array_data" at the top of the file
>>> b.write_hdf5("velocity1.hdf5")
>>> # Store the "b" array to the dataset "velocity" at the top of the file
>>> b.write_hdf5("velocity2.hdf5", dataset_name="velocity")
>>> # Store the "b" array to the dataset "velocity" in the group "fields"
>>> b.write_hdf5("velocity3.hdf5", dataset_name="velocity",

group_name="fields")

>>> import unyt as u
>>> v1 = u.read_hdf5("velocity1.hdf5")
>>> v2 = u.read_hdf5("velocity2.hdf5", dataset_name="velocity")
>>> v3 = u.read_hdf5("velocity3.hdf5", dataset_name="velocity",

group_name="fields")

https://pint.readthedocs.io/
https://www.astropy.org/

Similarly, to convert to an AstroPy Quantity object, use to_astropy :

User-Friendliness

Several di�erent entrypoints exist for research codes. For instance, an ontology of “end-users” in
science has developed that emphasizes that typically “library” codes are only used implicitly by
researchers. In this framing, library codes primarily interface with application codes, rather than with
researchers. We have taken a slightly di�erent approach with the design and development of yt, as it
exists in a middle-ground as a library used as an application within the scripting language Python and
also as a library for more complex analysis of data. As an outgrowth of this, we have taken particular
care with the “public-facing” API of yt. We have attempted to abstract the API enough from the data
structures yt uses internally that it is useful without detailed knowledge of yt’s internals. By the same
token, we have also attempted to provide low-level access to data, and to make as many of those
methods accessible and usable as well.

In addition to API considerations, there are three areas that we note have additional care paid to the
generation of �gures, helpful error messages, and to integration with the omnipresent Jupyter
environment.

Publication-Ready Figures

Matplotlib [106] is a fully-featured mechanism for generating �gures, with an incredible array of
options to customize formatting, appearance, rendering of fonts and glyphs, selection of colorbars,
calculation of tick locations, and appropriate bounds. This degree of �exibility provides extremely �ne-
grained control over the appearance of �gures for publication, and Matplotlib provides a large
number of output formats for even the most discerning of journals.

yt utilizes Matplotlib as its primary rendering engine for visualizations; while 3D renderings (such as
those described in 1.11.41) typically generate raw pixel bu�ers that are saved as images directly, most
other visualization functionality in yt relies on Matplotlib for generating images that are saved to disk.
Slices and projections are prepared as variable-resolution images that are pixelized (1.11.39) into �xed
resolution bu�ers, then provided to Matplotlib in the imshow function. Phase plots utilize the
pcolormesh function.

All of these internal plots utilize Matplotlib’s “object-oriented” interface, wherein Figure and Axes
objects are created directly. yt then manages the internal state of these objects, and provides high-

>>> from unyt import cm, s
>>> a = 4*cm**2/s
>>> print(a)
4 cm**2/s
>>> a.to_pint()
<Quantity(4, 'centimeter ** 2 / second')>

>>> from unyt import g, cm
>>> data = [3, 4, 5]*g/cm**3
>>> data.to_astropy()
<Quantity [3., 4., 5.] g / cm3>

level access to operations that are aware of the nature of the visualizations; for instance, operations
that zoom and pan, and that are unit-aware. In the case of 2D spatial images, these are all generated
as subclasses of a PlotWindow object, named such because it functions as a “window” onto the data,
including automatically generating and managing multiple �elds simultaneously.

Within the PlotWindow object, we set up two levels of visualization invalidation; when a
characteristic of the image bu�er data is changed (i.e., the viewing window, the resolution) then the
image data is said to be invalidated. When a characteristic of the visualization is changed (the label,
the scaling of the colorbar, the colormap) then the plot is said to be invalidated. This allows yt to
minimize the overhead of conducting potentially expensive operations on the underlying
(unprocessed) data, while maximizing its utilization of Matplotlib for generation of images. The image
bu�ers generated are also always available through the API, so in the common case that researchers
wish to take the genrated images and perform detailed manipulations or plot layouts, they are able to
do so, using the Matplotlib API they may already be familiar with.

In addition to providing data-aware operations for plot organization, a number of plot modi�cations
are available that provide data-aware annotations. As the plot window moves, the data-aware
annotations are updated and move with the window. For example, the process of generating vector
overlays from variable-resolution data requires the same set of operations as generating a �xed
resolution image bu�er, so yt provides a method for overplotting vector �elds. This also requires
correctly applying axis-ordering, so yt will automatically determine the appropriate x and y vectors in
the image plane, and for an o�-axis slice, it will generate in-plane vector �elds by computing the
appropriate set of dot products. Additional data-aware operations include overplotting locations of
gravitationally-bound clumps, contour plots of variable-resolution data, boundaries of data structures
(such as grids in patch-based grid datasets, cells from patch and octree datasets, particle locations),
streamlines, line integral convolution, and coordinate-aware annotations.

All of these �gure construction and modi�cation methods apply to cartesian (, ,) datasets, but yt
also supports them for curvilinear data such as that organized spherically (, ,) and cylindrically (,

,).

By focusing on the utilizing low-level yt operations to facilitate high-level interactions, we can embed
best practices for accessibility and visualizations at as many levels as possible. For instance, yt
provides suggested colormaps for speci�c �elds, will apply heuristics to determine the appropriate
scaling (such as symmetric logarithm) and utilize the appropriate labels and units to the data. This
allows users of yt to access both the expansive functionality of Matplotlib as well as the more domain-
speci�c tasks available in yt.

Finally, the cmyt package (‘colormaps from yt’) also provides several colormaps that were, until yt
4.0, included in the main yt distribution. Many of these are developed by yt contributors, typically
using the viscm package, and are designed to be perceptually uniform in colorspace.

Table 4: Colormaps provided by cmyt .

Colormap Name Colormap

algae

apricity

x y z
r θ ϕ r

z θ

https://github.com/matplotlib/viscm

Colormap Name Colormap

arbre

dusk

kelp

octarine

pastel

pixel_blue

pixel_green

pixel_red

xray

We note in particular that in previous versions of yt, algae was known as bds_highcontrast (and
was our default colormap) and that the arbre colormap is the current default colormap. pastel
was designed by Tune Kamae, and was previously referred to as kamae .

Enhanced Error Messages

Providing helpful error messages is almost an art form; projects like AstroPy [107] have developed
complex, helpful and thoughtfully-designed methods of providing as much usable information as
possible when something “goes wrong.” In recent development history, we have spent a considerable
amount of e�ort attempting to discern between errors that are “user-facing” and those that are
strictly “internal.” “Internal” errors, for the most part, are often highly-unexpected; they may result
from malformed data, or data that yt (and the developers) do not know to expect, or from general

software defects. “User-facing” errors are those that can be anticipated, and they are the errors for
which we endeavor to provide helpful and extensive responses.

Among others, some of the most useful error messages that yt provides are those related to
accessing �elds and loading datasets. For instance, accessing the �eld "x_velocity" instead of
"velocity_x" will produce an error, suggesting the correct �eld to access. When loading a dataset,

yt will attempt to determine what the format of the data is; if it is unable to unambiguously identify
the data format, it will provide an error message that shows the di�erent options, and indicates how
to disambiguate.

While these may seem like simple, obvious changes to make, they can hide di�cult technical
challenges, and more importantly, have dramatically improved the user experience for people using
yt.

Jupyter Integration

Project Jupyter is an overarching term for a collection of related projects that provide an extensive,
end-to-end suite for the user experience of developing code and narrative, as described in depth in
(among other papers) [108] and [109]. While many in the yt community utilize yt through python
scripts executed on the command line or through submission queues on high-performance
computing resources, a large fraction utilize Jupyter Notebooks for their data exploration. In addition
to enhancements in the user interface for unmodi�ed Python libraries, Jupyter provides opportunities
for libraries and applications to provide rich, enhanced interfaces with widgets, styling of text,
complex layout and in-line visualizations. An important aspect of Project Jupyter is the �exibility of the
kernel system, which mediates communication between a frontend (often a web browser, but also a
command-line application or native GUI) and a execution kernel, which can be running locally or on a
remote resource. This allows individuals to utilize a local web browser and execute their operations
on remote resources; by means of its �exible transport layer, images and the like can be passed back
to the web browser inline with the code that generated them, greatly speeding the process of
examining and manipulating data. For users of high-performance resources to which they do not have
physical access, having visualizations inline with code can be transformative; rather than having toe
scp or rsync plots back and forth to inspect, they are available with no additional steps. Among

the many di�erent advantages that working in a Jupyter (Notebook) environment o�ers, this is
perhaps the one that is the “stickiest” for researchers accustomed to working on systems without GUI
toolkits installed by default, and the one that has led to the widespread adoption of Jupyter. IPython, a
Python-speci�c Jupyter subproject, also provides a number of quality-of-life improvements, such as
tab-completion and “magic” commands that modify the interpretation and execution of code.

Under the broad umbrella of Project Jupyter is the ipywidgets project. The ipywidgets project
provides GUI elements that are displayed in Jupyter Notebooks that are generated and represented
by kernel-side Python code. This allows a Python project to expose deeper information or interactive
functionality without writing non-Python code, and also manages the data transport between the
display and the kernel.

yt takes advantage of some of these facilities, particularly in those areas where users have in the past
struggled with discoverability. yt utilizes IPython tab-completion for �eld access on data objects, which
greatly decreases the likelihood of typos for �eld types as well as �eld names. This is generated on a
per-dataset basis, to ensure that the �elds are all speci�cally available for each individual dataset.
Providing tab-completion reduces the need for users to look up the full collection of �elds (sorted by
�eld type) before referencing them. Because yt provides so many �elds, in many cases with similar
names, this substantially reduces the likelihood of typos and errors.

https://github.com/jupyter-widgets/ipywidgets/

In addition to tab-completion, yt utilizes ipywidgets in two speci�c places. The �rst of these is in
display of three-element numerical �elds; while this may seem like a rather niche application, these
typically show up as properties of datasets that require unit conversion into meaningful values. Many
simulation codes in astrophysics, for instance, normalize the indexing units and then apply unit
conversions to physical units. All three-element numeric arrays associated with units are displayed as
three (read-only) input boxes and a drop-down for unit conversion.

The other area that widgets are provided is in the �eld system. Navigating the available �elds (even
mediated by tab-completion) can be overwhelming, and more importantly, ensuring that a �eld
de�nition matches the expectations of a researcher is critical. The �elds widget, displayed whenever
the fields attribute of a dataset is displayed, allows exploration of the �eld de�nitions, including
the underlying source code, the expected units, display names, and so forth. Because many of the
�elds in yt are de�ned programmatically, it also attempts to resolve variables de�ned in a closure. For
example, if the �elds momentum_x , momentum_y and momentum_z are de�ned in a loop over the
available axes (x , y , z), the source code explorer will attempt to show the loop variable’s current
value for each de�nition.

These are the built-in widgets in yt; in addition to these, the widgyts package (described in [4])
provides a number of additional widgets. Following the publication of its paper, it has expanded to
include not only webassembly-based pixelization routines (to create in-browser ‘slippy maps’ of 2D
data) but also PyThreeJS-based dataset exploration of simulations. Packaging this separately from yt
provides the opportunity for faster development and more experimental usage of external packages,
but also greatly reduces discoverability and utilization. We are exploring options for encouraging its
uptake, particularly as we anticipate it will continue to grow and provide additional functionality.

Halo-Finding and Catalogs

Scaling and Parallelism

To support cases where data volume results in long processing time or large memory requirements,
yt operations have been parallelized using the Message Passing Interface (MPI; [110]). When designing
the parallel interface for yt, as discussed in [2], the design goals included ensuring that scripts
required little to no adjustments to be run in parallel. In the intervening time, the parallel operation
infrastructure has been rewritten in several key ways to enable individuals to apply multi-level
parallelism to their analysis operations.

Structure of Parallel Operations

Almost all of the operations in yt that are conducted in parallel follow a straightforward method of
decomposing work and consolidating results:

1. Identify which chunking method (see 1.8.1) is most appropriate for the operation.
2. Consolidate chunks according to IO minimization and assign to individual MPI tasks
3. Join (potentially applying reduction operations) �nal results to provide solution to all tasks in the

group

The �nal step, of joining across tasks, results in the �nal set of values being accessible to all tasks; this
is not a universal “�nal step” in parallel operations, and in some cases results in substantial
duplication of memory. This compromise was accepted as a result of the design goals of ensuring that
scripts can run unmodi�ed.

https://github.com/yt-project/widgyts

The parallelism in yt heavily leans upon the “index” for a dataset either being available already at
initiation time on all tasks, or that index being accessible through IO operations or fast generation.
This provides a degree of load-balancing that can be conducted, as estimates of memory and
processing requirements are available on all tasks (and thus the load-balancing calculations are
deterministic across all tasks). In essence, this means that for grid-based datasets, the entire grid
hierarchy is available on all processors; for octrees or particle datasets, it means that at least a rough
estimate of the distribution of values must be available (and identical) on all processors. This doesn’t
prevent opaquely distributed datasets from being decomposed, but it does allow datasets whose
distribution is well-described to be decomposed with greater precision.

Multi-Level Parallelism

In its original implementation of parallelism, yt utilized a single, global MPI communicator
(MPI_COMM_WORLD). This had the advantage of (counter-intuitively) not requiring a global state be
tracked; however, it also greatly limited the degree to which tasks could be distributed. Current
versions of yt now implement a stack-based approach to MPI communicators, where subsets of MPI
tasks are assigned to di�erent collective operations.

For example, when conducting halo �nding and analysis (see 1.14) yt can parallelize in groups of MPI
tasks across halos, and then decompose the work within a given halo across MPI tasks inside that
communicator. This takes place by specifying a task size at the top level (or allowing yt’s internal
heuristics to determine it) and then distributing work to sub-communicators, each of which is then
used for decomposition inside that top-level task.

In addition to multi-level communicators, yt utilizes OpenMP constructs exposed in Cython in several
places. This includes in the software volume rendering (see 1.11.41), in the pixelization operations for
SPH data (see 1.8.4), calculation of gravitational binding energy (see 1.16) and for computing the
bounding volume hierarchy for rendering �nite element meshes (see ??). In some instances, the
Cython interface to OpenMP has had unpredictable performance implications; owing to this, the
usage of OpenMP within yt has been somewhat conservative.

Parallelism Interfaces

yt presents interfaces for implicit parallelism, wherein internal parallelism constructs are utilized by yt
operations, as well as explicit operations that are conducted in parallel. The former is woven
throughout the fabric of all derived quantities, multi-dimensional pro�ling, and projection operations.
This parallelism is instrumented through the use of the yt “chunking” interface, and all derived
quantities implement a �xed set of initialization, calculation, reduction and �nalization operations.
The high-level interface to the DerivedQuantity subclasses computes the data chunks in the
source data object and then assigns these to individual MPI tasks in the current top-level
communicator. Each initializes storage space for the intermediate values, iterates over its assigned
chunks and constructs intermediate reductions, and then the �nalization step involves broadcasting
the values to all other tasks and completing the �nal set of operations. For projections, the procedure
is very similar; those datasets with an index duplicated across MPI tasks (such as patch-based grid
datasets) are collapsed along a dimension and each MPI task �lls in the values, which are then
reduced through a broadcast operation. Utilizing these operations requires no modi�cations to user-
facing code other than a call to yt.enable_parallelism() at the start of the script.

The user-facing parallel constructs allow for somewhat greater �exibility in de�ning parallel task
decomposition. Many objects in yt, particularly those such as the DatasetSeries object, have
constituent data objects on which analysis can be conducted. These often provide a piter method,
for “parallel iteration.” This provides a shorthand method of applying the parallel_objects

interface, described below, and allows for dynamic task allocation, per-item storage and specifying the
number of processors in the communicator assigned to each object.

Finally, yt also provides a top-level parallel_objects command. This accepts an iterable object
(which typically must be able to provide length, so unknown-length generators are not suitable) and a
desired sub-task size. yt will group these objects into sub-communicators of the speci�ed size,
defaulting to a single MPI task per object. Additionally, yt can provide a storage object to each
individual sub-communicator, if that storage object is provided to the parallel_objects function
call. Each sub-communicator can then set a key and a value, and all tasks will receive the union of
these keys and values following the completion of the loop. For example:

Following the completion of the loop, all tasks in the top-level communicator will have a full
my_dictionary object, which can be used for plotting or subsequent analysis. Common

applications of this include iterating over datasets to identify quantities, conduct analysis operations,
and so forth. Using multiple levels of parallelism allows researchers to allocate a large processor
count job on an HPC resource and dedicate individual portions of it to each dataset in a set of data
outputs. For many types of data analysis, particularly those operations conducted across a range of
outputs, this allows much easier strong scaling.

Performance of Operations

Inline Analysis

It is possible to instrument a simulation code to call Python routines inline during its execution. Enzo
has been instrumented in such a fashion; it accepts parameters that govern when and how frequently
Python is called. Prior to calling to Python, Enzo exposes views onto its data �elds as numpy arrays.
yt has a special-purpose frontend that can access these views, as well as additional metadata

passed through module-level objects, and then constructs appropriate yt -speci�c data objects
around the data provided by the simulation. In these cases, yt did not pass around datasets
between MPI tasks, but rather decomposed under the assumption that data communication was not
possible, and also that tasks would be broadly pre-load balanced by the simulation platform. Within
Enzo, all of the communication between Python and C++ was managed through Enzo’s usage of the C
API. This required some knowledge of how Python conducts garbage collection, and required ensuring
that reference counting was managed correctly to avoid memory leaks.

This non-standardized approach to conducting in situ visualization led to the creation and
development of the library libyt which serves as an intermediary layer between simulation codes
and yt (and Python in general.) This library encapsulates all Python API calls, manages references,
and provides a systematic method for providing data pointers to Python. libyt provides a stable C-
based API, and is accessible from numerous di�erent languages. It also provides a custom-built yt
frontend for accepting data. A more complete description is outside the scope of this paper, and we
refer the reader to (MJT: cite in prep manuscript).

yt.enable_parallelism()
my_dictionary = {}
for sto, dataset in dataset_series.piter(storage=my_dictionary):
 ... # process
 sto.result = ... # some information processed for this dataset
 sto.result_id = ... # some identifier for this dataset

Analysis Modules

For much of its development history, yt took the approach of bundling as many analysis modules as
possible in the primary repository. This provided the advantage of having all work be centralized, and
ensuring that each download or installation of yt was a fully-featured system for analyzing a large
swath of data, but it brought with it the development overhead of the entire yt package for what in
many cases were isolated pieces of functionality with separable responsibilities.

As a result of the slowing in speed of development as a result of review requirements (and limited
personnel to conduct those reviews), some of the analysis modules that were bundled with yt have
been “spun out” into their own repository, yt_astro_analysis . This repository, which is
developed, released and installed separately from yt , includes modules for cosmological
observation (upon which Triden, which is discussed in 1.17.1, is based), dark matter halo �nding and
analysis, tools for interacting with position-position-velocity cubes, and a system for exporting from
yt to RADMC-3D [111].

Ecosystem of Packages

Several packages have been developed that utilize yt as an infrastructural component. In contrast to
the analysis modules, which have typically been built as extensions of yt , these extensions utilize
yt as a framework and typically only rely upon public APIs, often with no changes necessary to

upstream yt . In some cases, yt is also an optional dependency for the package. In most cases,
these are described in detail elsewhere, and citations to that external information are included here.

Trident

Trident [112] is a Python-based open-source tool for post-processing hydrodynamical simulations to
produce synthetic absorption spectra and related data. In many ways, Trident is the �rst external
package that utilizes yt to provide data access and numerical operations, but then builds on those to
develop detailed, astrophysically-aware systems for processing and analyzing that data.

Powderday

Powderday [113,114] is an open source package connecting yt , population synthesis modules and
the monte carlo radiation transport code Hyperion [115] to develop synthetic observations of galaxies
from astrophysics simulations. Powderday uses yt to read and transform data, including high-�delity
gridding of SPH particles into an octree form, to prepare galaxy simulations to be processed. Currently
Powderday uses the Arepo, Enzo, Gadget, Gizmo, and Tipsy front ends to read in simulation results,
and convert them to a common format in preparation for dust radiative transfer (using unyt to
ensure common units). Plans are in place to employ the wide range of front ends available in yt to
broaden the applicability of powderday to a wider range of galaxy simulations.

ytree

Building on yt for access to halo catalogs, and implementing a similar system for derived �elds as
applied to graph datasets, ytree [116] is a system for analyzing merger trees from analysis of dark
matter halos in cosmological simulations.

ytree provides �exibility in determining the path that a given analysis takes through the graph of
merger trees; for instance, it enables the user to select if they wish to follow the “most massive”
progenitor halo backwards in time, or even to set their own criteria for this. Connecting this to the
raw, unprocessed data from the simulation (such as the unsampled particle or cell content that
comprises the halos) allows researchers to deepen and guide their analysis based on the physical
characteristics of the merger history.

pyxsim

pyXSIM [117] is a python package for simulating X-ray observations from astrophysical sources. It
implements the PHOX algorithm [118,119] and is implemented to support grid-based codes, particle-
based codes, and even data constructed from scratch in numpy arrays. pyXSIM has been used to
create synthetic observations from current and upcoming space telescopes.

ytini

While yt has functionality for volume rendering, it provides far from the scene-control, composition
and camera positioning necessary for “cinematic visualization.” The tool ytini [120] serves as an
intermediary between yt and the visualization platform Houdini, often used for special e�ects and
visual arts in industry and professional production environments. ytini was developed to ease the
process of converting data from simulation format into one suitable for production teams to utilize in
Houdini and other visual e�ects software, and has been designed to enable deeper collaboration
between researchers and visualization and outreach experts.

Future Directions

Sustainability

When discussing software projects, “Sustainability” is a complex, expansive topic that typically means
di�erent things to di�erent people. A number of di�erent de�nitions have been proposed – ranging
from pragmatic descriptions of responsivity to bug reports or changing hardware, to more idealistic
descriptions of active development and ever-increasing functionality. For the purposes of describing
yt’s approach to sustainability, we will use these as path markers but not restrictions.

yt is supported through both peer-production and grant-funded development. At times, this can pose
challenges; the requirements imposed by grant-funded development naturally concentrates decision
making, but within the yt community we have (so far) navigated this through deep engagement in
community processes and interaction. However, at the risk of belaboring a point that has been well-
explored elsewhere, grant-funded development has traditionally focused on “new” or “innovative”
development, rather than maintenance of a software project.

A tension exists, however, between support of an existing project and the support of new projects in
an ecosystem. By supporting an existing project, resources can tend to become concentrated;
conversely, if a project supports a broader research agenda, that resource concentration can result in
greater e�ort-multipliers for individuals who utilize the project. We’re aware of this tension in yt; in
fact, while yt has been grant-supported, most of the grant development has gone to a very small
number of groups. This grant funding has been provided through the National Science Foundation,
the Gordon and Betty Moore Foundation, the Department of Energy, the Chan Zuckerberg Initiative
and other sources. [[121], [122], [123]. Grants have supported the development of new features,
including speci�c functionality for analysis routines and support for non-astronomical domains.

Into each of these grants has been explicit support for community building, constituted by the
development of documentation, videos, and tutorials, as well as mentoring of new contributors and
shepherding the growth of the project through code review and issue management. While this does
provide support for individuals who can provide dedicated, thoughtful attention to code review and
bug reports, it is, quite frankly, insu�cient without the engagement of non-funded community
members who contribute their time and energy.

There are a number of avenues of development for yt, each of which draws di�erent degrees of
interest, urgency, and breadth of engagement. A few of these are worth highlighting.

Platform Functionality

Improving and developing the functionality of yt as a whole is a particular focus for investment of time
and resources. Typically, this is conducted via one of two avenues; the �rst is through explicit, funded
development done for speci�c use cases. The second mode of functionality development is when
community members (either those who are already participants in the community or those who seek
to) identify a feature that meets their particular use case, and work to develop it.

Community contributions usually fall into one of two categories – new functionality (such as
supporting new datasets, applying new operations to datasets) or by scaling or improving the
performance of yt for a use case or in general. The former is more common than the latter, although
both have occurred. Expanding the featureset of yt tends to be more attractive than optimization for a
large swath of the userbase; in some sense, optimization opens new avenues for scienti�c exploration
(by taking formerly out-of-reach options and placing them within the realm of reasonable execution
time), but adding new features certainly does.

A few examples of new functionality provided by community members include the volume rendering
of octree datasets, support for new code frontends (such as AREPO), and many of the analysis
modules. New functionality provided by funded development has included long-term improvements
such as the “demeshening” of particle datasets and support for non-astrophysical domains. A few
notable improvements to the e�ciency and scalability of yt include multi-level parallelism operations
and the initial implementation of dask as an array backend.

In general, we have found it di�cult to move through large upheavals of code without large-scale
e�ort on the part of the community. This has resulted in a reluctance to investigate particularly
invasive changes, and can provide a distortion of the cost/bene�t analysis, leaning toward risk
aversion. The YTEP process mitigates this somewhat, but also provides additional opportunities for a
‘veto’ that can dampen enthusiasm and impede development. At the same time, the safe guards
provided by this can help to ensure stability for the community, particularly those not actively
engaged in development.

Project Maintenance

In addition to development of new features, the correction of problems or updates to old behavior
are also critical to the sustained usage and applicability of a project. In this category of “bug �xes” we
certainly include faults or problems with yt itself, but it’s also important to note that in many cases, we
can also use this category to describe improvements in behavior that bring the results greater
accuracy or precision.

It is tough to estimate the cost of bug �xes, in terms of labor or in terms of community member
attrition, but [124] suggests that large, established projects on github may spend up to 40% of their
time on bug�xes rather than new features. While we have not been able to verify this, examining the

cadence of bug �x releases versus new feature releases suggests that this is indeed the case for yt as
well.

Maintenance and bug �xes are critical to developing yt as a community-focused code. The damage
that can be done by ignoring a bug report, dismissing a suggestion, or outright rejecting proposed
�xes is real, and can have measurable impact on community cohesion and growth. As such, in the yt
development process we strive to be as accommodating and welcoming as possible. This requires
balancing being welcoming and patient against the very real costs that come with responding to bug
�xes and feature requests; often this means providing helpful insight that may already be covered by
the documentation, or that may re�ect known bugs. This is a challenge, and one that bene�ts from
having dedicated maintainers, or at least dedicated maintenance time from the developer community.
Furthermore, we have found that regular, collaborative co-working sessions can ease this burden,
although they occasionally veer into too light of code review or constant reiteration of “standing”
issues.

Ecosystem Maintenance

yt exists inside a larger ecosystem of packages and infrastructure, composed of the Python language,
the Scienti�c Python community, as well as the computational science communities (predominantly
astrophysics). Each of these communities, much like yt itself, has its own set of priorities, needs, and
development schedules. Changes in systems that yt depends on may require changes in yt; changes in
what other systems expect from yt may likewise require changes in yt.

One of the more notable shifts in recent years has been in how Python libraries and applications are
distributed. At the time of the �rst yt method paper, yt was distributed typically in source form with its
entire dependency stack to provide a uniform experience on supercomputer installations. This was, at
the time, “necessary” because Python was not as widely used in the computational science and
astrophysics communities as it is now, and the versions of various libraries were often far out of date.
In the intervening time, however, a number of shifts have occurred, including the advent of conda
(and conda-forge), wheels, wide-scale adoption of Python in the scienti�c community, and
considerable standardization and improvement of package metadata and installation methods.
Ensuring yt maintains compatibility with the modern package ecosystem has taken, at times, a fairly-
large degree of e�ort on the part of the developers making the changes and the developers who
intend to continue developing.

In addition to the changes in yt necessitated by changes to packaging or updates in APIs or behavior,
there are also those changes that are necessary to conform to community norms. For example,
utilizing code formatting tools, automated “linting” and other automated methods of applying “quality
control” to incoming changesets. Or, somewhat more invasively, inserting “type hints” that can provide
automated analysis and inline suggestions within integrated development environments. These
developments may not provide as much value to long-time developers, but can be important for
newcomers who are less familiar with the library or coding conventions. The balance with these
changes can be di�cult to strike, to minimize disruption to existing developers and users while still
expanding the accessibility of the library to others.

Enjoyment Maximization

Another aspect of sustainability is that for many people, developing software can be fun. This is
certainly true for many members of the yt community – sometimes in ways that align with the goals
and requirements of academic research, and sometimes in ways that do not directly advance those
goals. For instance, the initial development of the software volume renderer was not aligned with

immediate research goals, but it has gone on to support synthetic observations and to foster much
broader research and education opportunities.

While development for the joy of developing can be an exciting and helpful process, it is also
something that can require a delicate balance of attention and engagement from the rest of the
community. Accepting changes into the yt codebase requires careful review, and dedication of
resources (physical and intellectual) that may already be allocated elsewhere.

Furthermore, not everyone derives pleasure from the same types of development. Some individuals
love to build new things and sca�old out plugins or visualization types; others have great satisfaction
from optimization or documentation. Accepting and supporting these di�erent types of development
is critical for a community built on respect, trust and gratitude.

Conclusions

Since the publication of the last paper describing the methods and capabilities of yt , it has been
dramatically transformed; while many of the underlying algorithms for processing grid-based data
may remain similar or identical, it has been expanded considerably in scope to include data of many
di�erent forms. Furthermore, each of these classes of data – most notably octree, smoothed particle
hydrodynamics, and unstructured meshes – requires substantial care to ensure that the way that
class of data is represented is a high-�delity re�ection of the underlying methods. In this paper, we
have presented our approach to making yt a functional, scientist-driven library to access, process,
and visualize data. This includes the selection of spatial (and non-spatial) regions, converting between
spaces for representing data in index coordinates and geometric coordinates, the multi-dimensional
reduction of data along spatial and non-spatial dimensions, production of publication-quality plots,
volume rendering (both hardware and software) and the approaches we have taken toward
developing a community of individuals using and developing yt .

We are grateful for the community of individuals who have participated in yt ’s development; the
authorship of this paper re�ects a large, but not complete, fraction of those who have contributed
changesets, although invitations have been extended to everyone we were able to reach. The
landscape of astrophysical computation is di�erent now than it was when yt was created, and even
since the publication of the �rst yt method paper. Code development has become more open,
conducted on platforms such as Github, and investment in community around software is largely
recognized as necessary, rather than supplemental. The usage of Python as a library, at least for high-
level APIs, has become quite widespread, albeit not quite ubiquitous.

While the community of individuals who participate in yt usage and development is not as large as
some in the astrophysical community, or in the broader pydata ecosystem, it is thriving. The future
development of yt will be focused on solidifying our existing community and growing to support the
modern needs of scientists from with di�erent approaches to and conceptions of data analysis and
visualization.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

References

manubot/manubot
Manubot
(2024-06-02) https://github.com/manubot/manubot

yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA
Matthew J Turk, Britton D Smith, Je�rey S Oishi, Stephen Skory, Samuel W Skillman, Tom Abel,
Michael L Norman
The Astrophysical Journal Supplement Series (2010-12-28) https://doi.org/ft6md2
DOI: 10.1088/0067-0049/192/1/9

Ten simple rules for helping newcomers become contributors to open projects
Dan Sholler, Igor Steinmacher, Denae Ford, Mara Averick, Mike Hoye, Greg Wilson
PLOS Computational Biology (2019-09-12) https://doi.org/gf8gb9
DOI: 10.1371/journal.pcbi.1007296 · PMID: 31513567 · PMCID: PMC6742214

widgyts: Custom Jupyter Widgets for Interactive Data Exploration with yt
Madicken Munk, Matthew Turk
Journal of Open Source Software (2020-01-29) https://doi.org/gqbxbf
DOI: 10.21105/joss.01774

E�ects of Adopting Code Review Bots on Pull Requests to OSS Projects
Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, Marco A Gerosa
2020 IEEE International Conference on Software Maintenance and Evolution (ICSME) (2020-09)
https://doi.org/grp6mq
DOI: 10.1109/icsme46990.2020.00011

Smoothed particle hydrodynamics and magnetohydrodynamics
Daniel J Price
Journal of Computational Physics (2012-02) https://doi.org/d4zkq9
DOI: 10.1016/j.jcp.2010.12.011

Smoothed Particle Hydrodynamics in Astrophysics
Volker Springel
Annual Review of Astronomy and Astrophysics (2010-08-01) https://doi.org/c59dm2
DOI: 10.1146/annurev-astro-081309-130914

<scp>SPLASH</scp>: An Interactive Visualisation Tool for Smoothed Particle
Hydrodynamics Simulations
Daniel J Price
Publications of the Astronomical Society of Australia (2007) https://doi.org/�sfkx
DOI: 10.1071/as07022

Improving convergence in smoothed particle hydrodynamics simulations without pairing
instability
Walter Dehnen, Hossam Aly
Monthly Notices of the Royal Astronomical Society (2012-08-07) https://doi.org/f38hjj
DOI: 10.1111/j.1365-2966.2012.21439.x

Inconsistencies arising from the coupling of galaxy formation sub-grid models to
pressure-smoothed particle hydrodynamics
Josh Borrow, Matthieu Schaller, Richard G Bower
Monthly Notices of the Royal Astronomical Society (2021-05-19) https://doi.org/gsj6tn

https://github.com/manubot/manubot
https://doi.org/ft6md2
https://doi.org/10.1088/0067-0049/192/1/9
https://doi.org/gf8gb9
https://doi.org/10.1371/journal.pcbi.1007296
https://www.ncbi.nlm.nih.gov/pubmed/31513567
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742214
https://doi.org/gqbxbf
https://doi.org/10.21105/joss.01774
https://doi.org/grp6mq
https://doi.org/10.1109/icsme46990.2020.00011
https://doi.org/d4zkq9
https://doi.org/10.1016/j.jcp.2010.12.011
https://doi.org/c59dm2
https://doi.org/10.1146/annurev-astro-081309-130914
https://doi.org/ffsfkx
https://doi.org/10.1071/as07022
https://doi.org/f38hjj
https://doi.org/10.1111/j.1365-2966.2012.21439.x
https://doi.org/gsj6tn
https://doi.org/10.1093/mnras/stab1423

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

DOI: 10.1093/mnras/stab1423

SciTools/cartopy: v0.21.1
Phil Elson, Elliott Sales De Andrade, Greg Lucas, Ryan May, Richard Hattersley, Ed Campbell,
Andrew Dawson, Stephane Raynaud, Scmc72, Bill Little, … Daryl Herzmann
Zenodo (2022-12-12) https://doi.org/gr96pg
DOI: 10.5281/zenodo.7430317

Magnetic out�ows from turbulent accretion disks
J Jacquemin-Ide, G Lesur, J Ferreira
Astronomy & Astrophysics (2021-03) https://doi.org/gsgh4s
DOI: 10.1051/0004-6361/202039322

Petascale Cosmology: Simulations of Structure Formation
Rupert Croft, Tiziana Di Matteo, Nishikanta Khandai
Comput. Sci. Eng. (2015-03) http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7006381
DOI: 10.1109/mcse.2015.5

The LSST Data Management System
Mario Jurić, Je�rey Kantor, K-T Lim, Robert H Lupton, Gregory Dubois-Felsmann, Tim Jenness,
Tim S Axelrod, Jovan Aleksić, Roberta A Allsman, Yusra AlSayyad, … LSST Project
eprint arXiv:1512.07914 (2015) http://adsabs.harvard.edu/abs/2015arXiv151207914J

A computer oriented geodetic data base and a new technique in
�le sequencing
GM Morton
IBM Ltd. (1996)

Gesammelte Abhandlungen: Band III: Analysis - Grundlagen der
Mathematik Physik - Verschiedenes Lebensgeschichte
David Hilbert
Springer Berlin Heidelberg (1970) http://dx.doi.org/10.1007/978-3-662-25726-5{_}1
DOI: 10.1007/978-3-662-25726-5_1 · ISBN: 978-3-662-25726-5

The cosmological simulation code gadget-2
Volker Springel
Mon. Not. R. Astron. Soc. (2005-12) http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
DOI: 10.1111/j.1365-2966.2005.09655.x

Cosmological Hydrodynamics with Adaptive Mesh Re�nement: a
new high resolution code called RAMSES
Romain Teyssier
Astron. Astrophys. v.385, p.337-364 (2001-11) http://arxiv.org/abs/astro-ph/0111367
http://dx.doi.org/10.1051/0004-6361:20011817
DOI: 10.1051/0004-6361:20011817

Speeding up construction of PMR quadtree-based spatial
indexes
Gisli R Hjaltason, Hanan Samet
VLDB J. Int. J. Very Large Data Bases (2002-10) http://link.springer.com/10.1007/s00778-002-
0067-8
DOI: 10.1007/s00778-002-0067-8

Fast construction of k-nearest neighbor graphs for point clouds.

https://doi.org/10.1093/mnras/stab1423
https://doi.org/gr96pg
https://doi.org/10.5281/zenodo.7430317
https://doi.org/gsgh4s
https://doi.org/10.1051/0004-6361/202039322
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7006381
https://doi.org/10.1109/MCSE.2015.5
http://adsabs.harvard.edu/abs/2015arXiv151207914J
http://dx.doi.org/10.1007/978-3-662-25726-5%7B/_%7D1
https://doi.org/10.1007/978-3-662-25726-5_1
http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
https://doi.org/10.1111/j.1365-2966.2005.09655.x
http://arxiv.org/abs/astro-ph/0111367%20http://dx.doi.org/10.1051/0004-6361:20011817
https://doi.org/10.1051/0004-6361:20011817
http://link.springer.com/10.1007/s00778-002-0067-8
https://doi.org/10.1007/s00778-002-0067-8

21.

22.

23.

24.

25.

26.

27.

28.

29.

Michael Connor, Piyush Kumar
IEEE Trans. Vis. Comput. Graph. (2010-01) http://www.ncbi.nlm.nih.gov/pubmed/20467058
DOI: 10.1109/tvcg.2010.9 · PMID: 20467058

A class of data structures for associative searching
JA Orenstein, TH Merrett
Proc. 3rd acm sigact-sigmod symp. Princ. Database syst. - pod. ’84 (1984-04)
http://dl.acm.org/citation.cfm?id=588011.588037
DOI: 10.1145/588011.588037 · ISBN: 0897911288

Encoded bitmap indexing for data warehouses
Ming-Chuan Wu, AP Buchmann
Proc. 14th int. Conf. Data eng. (1998) http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=655780
DOI: 10.1109/icde.1998.655780 · ISBN: 0-8186-8289-2

Bitmap index design and evaluation
Chee-Yong Chan, Yannis E Ioannidis
ACM SIGMOD Rec. (1998-06) http://dl.acm.org/citation.cfm?id=276305.276336
DOI: 10.1145/276305.276336 · ISBN: 0-89791-995-5

An e�cient bitmap encoding scheme for selection queries
Chee-Yong Chan, Yannis E Ioannidis
ACM SIGMOD Rec. (1999-06) http://dl.acm.org/citation.cfm?id=304181.304201
DOI: 10.1145/304181.304201 · ISBN: 1-58113-084-8

Evaluating Geospatial Geometry and Proximity Queries Using
Distributed Hash Tables
Matthew Malensek, Sangmi Pallickara, Shrideep Pallickara
Comput. Sci. Eng. (2014-07) http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6785924
DOI: 10.1109/mcse.2014.48

Bitmap indexes for large scienti�c data sets: a case study
RR Sinha, S Mitra, M Winslett
Proc. 20th ieee int. Parallel distrib. Process. Symp. (2006)
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1639304
DOI: 10.1109/ipdps.2006.1639304 · ISBN: 1-4244-0054-6

Multi-resolution bitmap indexes for scienti�c data
Rishi Rakesh Sinha, Marianne Winslett
ACM Trans. Database Syst. (2007-08) http://portal.acm.org/citation.cfm?doid=1272743.1272746
DOI: 10.1145/1272743.1272746

Improving the Performance of High-Energy Physics Analysis
through Bitmap Indices
Kurt Stockinger, Dirk Duellmann, Wolfgang Hoschek, Erich Schikuta
Database expert syst. Appl. 11th int. Conf. DEXA 2000 london, uk, sept. 4–8, 2000 proc. (2000-
06) http://link.springer.com/10.1007/3-540-44469-6
DOI: 10.1007/3-540-44469-6 · ISBN: 978-3-540-67978-3

Using bitmap index for interactive exploration of large
datasets
Kesheng Wu, W Koegler, J Chen, A Shoshani

http://www.ncbi.nlm.nih.gov/pubmed/20467058
https://doi.org/10.1109/TVCG.2010.9
https://www.ncbi.nlm.nih.gov/pubmed/20467058
http://dl.acm.org/citation.cfm?id=588011.588037
https://doi.org/10.1145/588011.588037
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=655780
https://doi.org/10.1109/ICDE.1998.655780
http://dl.acm.org/citation.cfm?id=276305.276336
https://doi.org/10.1145/276305.276336
http://dl.acm.org/citation.cfm?id=304181.304201
https://doi.org/10.1145/304181.304201
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6785924
https://doi.org/10.1109/MCSE.2014.48
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1639304
https://doi.org/10.1109/IPDPS.2006.1639304
http://portal.acm.org/citation.cfm?doid=1272743.1272746
https://doi.org/10.1145/1272743.1272746
http://link.springer.com/10.1007/3-540-44469-6
https://doi.org/10.1007/3-540-44469-6

30.

31.

32.

33.

34.

35.

36.

37.

38.

15th int. Conf. Sci. Stat. Database manag. 2003. (2003)
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1214955
DOI: 10.1109/ssdm.2003.1214955 · ISBN: 0-7695-1964-4

Range-based bitmap indexing for high cardinality attributes with
skew
PS Yu
Proceedings. Twenty-second annu. Int. Comput. Softw. Appl. Conf. (Compsac ’98) (cat. No.98CB
36241) (1998) http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=716637
DOI: 10.1109/cmpsac.1998.716637 · ISBN: 0-8186-8585-9

Multidimensional indexing and query coordination for tertiary
storage management
A Shoshani, LM Bernardo, H Nordberg, D Rotem, A Sim
Proceedings. Elev. Int. Conf. Sci. Stat. Database manag. (1999)
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=787637
DOI: 10.1109/ssdm.1999.787637 · ISBN: 0-7695-0046-3

Evaluation Strategies for Bitmap Indices with Binning
Kurt Stockinger, Kesheng Wu, Arie Shoshani
Database expert syst. Appl. 15th int. Conf. DEXA 2004, zaragoza, spain, august 30-september 3,
2004. Proc. (2004) http://dx.doi.org/10.1007/978-3-540-30075-5{_}12
DOI: 10.1007/978-3-540-30075-5_12 · ISBN: 978-3-540-30075-5

Compressed bitmap indices for e�cient query processing
Kesheng Wu, Ekow Otoo, Arie Shoshani
Lawrence Berkeley Natl. Lab. (2001-09) http://escholarship.org/uc/item/8k22w7q2

Sorting improves word-aligned bitmap indexes
Daniel Lemire, Owen Kaser, Kamel Aouiche
Data Knowl. Eng. (2010-01) http://dl.acm.org/citation.cfm?id=1663645.1663682
DOI: 10.1016/j.datak.2009.08.006

Compressed bitmap indexes: beyond unions and
intersections
Owen Kaser, Daniel Lemire
Softw. Pract. Exp. (2016-02) http://doi.wiley.com/10.1002/spe.2289
DOI: 10.1002/spe.2289

Smoothed Particle Hydrodynamics
JJ Monaghan
Annu. Rev. Astron. Astrophys. (1992-09)
http://adsabs.harvard.edu/abs/1992ARA{\&}A..30..543M
DOI: 10.1146/annurev.aa.30.090192.002551

GADGET: a code for collisionless and gasdynamical cosmological
simulations
Volker Springel, Naoki Yoshida, Simon DM White
New Astron. (2001-04) http://adsabs.harvard.edu/abs/2001NewA....6...79S
DOI: 10.1016/s1384-1076(01)00042-2

A new class of accurate, mesh-free hydrodynamic simulation
methods
PF Hopkins
Mon. Not. R. Astron. Soc. (2015-04) http://adsabs.harvard.edu/abs/2014arXiv1409.7395H

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=1214955
https://doi.org/10.1109/SSDM.2003.1214955
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=716637
https://doi.org/10.1109/CMPSAC.1998.716637
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=787637
https://doi.org/10.1109/SSDM.1999.787637
http://dx.doi.org/10.1007/978-3-540-30075-5%7B/_%7D12
https://doi.org/10.1007/978-3-540-30075-5_12
http://escholarship.org/uc/item/8k22w7q2
http://dl.acm.org/citation.cfm?id=1663645.1663682
https://doi.org/10.1016/j.datak.2009.08.006
http://doi.wiley.com/10.1002/spe.2289
https://doi.org/10.1002/spe.2289
http://adsabs.harvard.edu/abs/1992ARA%7B/&%7DA..30..543M
https://doi.org/10.1146/annurev.aa.30.090192.002551
http://adsabs.harvard.edu/abs/2001NewA....6...79S
https://doi.org/10.1016/S1384-1076(01)00042-2
http://adsabs.harvard.edu/abs/2014arXiv1409.7395H
https://doi.org/10.1093/mnras/stv195

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

DOI: 10.1093/mnras/stv195

Cython: The Best of Both Worlds
Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, Kurt Smith
Comput. Sci. Eng. (2011-03) http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5582062
DOI: 10.1109/mcse.2010.118

Adaptive Mesh Re�nement for conservative systems: multi-dimensional e�ciency
evaluation
R Keppens, M Nool, G Tóth, JP Goedbloed
Computer Physics Communications (2003-07) https://doi.org/ck627b
DOI: 10.1016/s0010-4655(03)00139-5

MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS
O Porth, C Xia, T Hendrix, SP Moschou, R Keppens
The Astrophysical Journal Supplement Series (2014-08-20) https://doi.org/ggcgbb
DOI: 10.1088/0067-0049/214/1/4

MPI-AMRVAC 2.0 for Solar and Astrophysical Applications
C Xia, J Teunissen, IEl Mellah, E Chané, R Keppens
The Astrophysical Journal Supplement Series (2018-02-01) https://doi.org/gkh2v6
DOI: 10.3847/1538-4365/aaa6c8

Thermal instabilities: Fragmentation and �eld misalignment of �lament �ne structure
N Claes, R Keppens, C Xia
Astronomy & Astrophysics (2020-04) https://doi.org/gqbk65
DOI: 10.1051/0004-6361/202037616

Prominence formation by levitation-condensation at extreme resolutions
JM Jenkins, R Keppens
Astronomy & Astrophysics (2021-02) https://doi.org/gqbk66
DOI: 10.1051/0004-6361/202039630

Dynamical signatures of Rossby vortices in cavity-hosting disks
CMT Robert, H Méheut, F Ménard
Astronomy & Astrophysics (2020-09) https://doi.org/gqbk64
DOI: 10.1051/0004-6361/201937414

High Angular Momentum Halo Gas: A Feedback and Code-independent Prediction of
LCDM
Kyle R Stewart, Ariyeh H Maller, Jose Oñorbe, James S Bullock, MRyan Joung, Julien Devriendt,
Daniel Ceverino, Dušan Kereš, Philip F Hopkins, Claude-André Faucher-Giguère
The Astrophysical Journal (2017-06-30) https://doi.org/gf48kq
DOI: 10.3847/1538-4357/aa6d�

Fast galaxy bars continue to challenge standard cosmology
Mahmood Roshan, Neda Ghafourian, Tahere Kash�, Indranil Banik, Moritz Haslbauer, Virginia
Cuomo, Benoit Famaey, Pavel Kroupa
Monthly Notices of the Royal Astronomical Society (2021-09-11) https://doi.org/gqsz56
DOI: 10.1093/mnras/stab2553

O <scp>vi</scp> traces photoionized streams with collisionally ionized boundaries in
cosmological simulations of <i>z</i> ∼ 1 massive galaxies
Clayton Strawn, Santi Roca-Fàbrega, Nir Mandelker, Joel Primack, Jonathan Stern, Daniel
Ceverino, Avishai Dekel, Bryan Wang, Rishi Dange

https://doi.org/10.1093/mnras/stv195
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5582062
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/ck627b
https://doi.org/10.1016/s0010-4655(03)00139-5
https://doi.org/ggcgbb
https://doi.org/10.1088/0067-0049/214/1/4
https://doi.org/gkh2v6
https://doi.org/10.3847/1538-4365/aaa6c8
https://doi.org/gqbk65
https://doi.org/10.1051/0004-6361/202037616
https://doi.org/gqbk66
https://doi.org/10.1051/0004-6361/202039630
https://doi.org/gqbk64
https://doi.org/10.1051/0004-6361/201937414
https://doi.org/gf48kq
https://doi.org/10.3847/1538-4357/aa6dff
https://doi.org/gqsz56
https://doi.org/10.1093/mnras/stab2553
https://doi.org/grk7k2

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Monthly Notices of the Royal Astronomical Society (2020-12-24) https://doi.org/grk7k2
DOI: 10.1093/mnras/staa3972

Testing feedback from star clusters in simulations of the Milky Way formation
Gillen Brown, Oleg Y Gnedin
Monthly Notices of the Royal Astronomical Society (2022-04-28) https://doi.org/grk7k3
DOI: 10.1093/mnras/stac1164

Modeling UV Radiation Feedback from Massive Stars. I. Implementation of Adaptive Ray-
tracing Method and Tests
Jeong-Gyu Kim, Woong-Tae Kim, Eve C Ostriker, MAaron Skinner
The Astrophysical Journal (2017-12-15) https://doi.org/gqsz6c
DOI: 10.3847/1538-4357/aa9b80

A Magnetized, Moon-forming Giant Impact
PD Mullen, CF Gammie
The Astrophysical Journal Letters (2020-10-29) https://doi.org/gqsz6j
DOI: 10.3847/2041-8213/abb�d

AMReX: a framework for block-structured adaptive mesh re�nement
Weiqun Zhang, Ann Almgren, Vince Beckner, John Bell, Johannes Blaschke, Cy Chan, Marcus
Day, Brian Friesen, Kevin Gott, Daniel Graves, … Michael Zingale
Journal of Open Source Software (2019-05-12) https://doi.org/ghr39d
DOI: 10.21105/joss.01370

Local adaptive mesh re�nement for shock hydrodynamics
MJ Berger, P Colella
Journal of Computational Physics (1989-05) https://doi.org/d6dh8m
DOI: 10.1016/0021-9991(89)90035-1

Meeting the Challenges of Modeling Astrophysical Thermonuclear Explosions: Castro,
Maestro, and the AMReX Astrophysics Suite
M Zingale, AS Almgren, MG Barrios Sazo, VE Beckner, JB Bell, B Friesen, AM Jacobs, MP Katz, CM
Malone, AJ Nonaka, … W Zhang
Journal of Physics: Conference Series (2018-05) https://doi.org/gqsz53
DOI: 10.1088/1742-6596/1031/1/012024

CASTRO: A Massively Parallel Compressible Astrophysics Simulation Code
Ann Almgren, Maria Sazo, John Bell, Alice Harpole, Max Katz, Jean Sexton, Donald Willcox,
Weiqun Zhang, Michael Zingale
Journal of Open Source Software (2020-10-23) https://doi.org/grk7k8
DOI: 10.21105/joss.02513

MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver
Duoming Fan, Andrew Nonaka, Ann Almgren, Donald Willcox, Alice Harpole, Michael Zingale
Journal of Open Source Software (2019-11-21) https://doi.org/grk7k7
DOI: 10.21105/joss.01757

<scp>quokka</scp>: a code for two-moment AMR radiation hydrodynamics on GPUs
Benjamin D Wibking, Mark R Krumholz
Monthly Notices of the Royal Astronomical Society (2022-02-18) https://doi.org/gpsbw2
DOI: 10.1093/mnras/stac439

Numerical simulations of buoyancy-driven �ows using adaptive mesh re�nement:
structure and dynamics of a large-scale helium plume

https://doi.org/grk7k2
https://doi.org/10.1093/mnras/staa3972
https://doi.org/grk7k3
https://doi.org/10.1093/mnras/stac1164
https://doi.org/gqsz6c
https://doi.org/10.3847/1538-4357/aa9b80
https://doi.org/gqsz6j
https://doi.org/10.3847/2041-8213/abbffd
https://doi.org/ghr39d
https://doi.org/10.21105/joss.01370
https://doi.org/d6dh8m
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/gqsz53
https://doi.org/10.1088/1742-6596/1031/1/012024
https://doi.org/grk7k8
https://doi.org/10.21105/joss.02513
https://doi.org/grk7k7
https://doi.org/10.21105/joss.01757
https://doi.org/gpsbw2
https://doi.org/10.1093/mnras/stac439

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Nicholas T Wimer, Marcus S Day, Caelan Lapointe, Michael A Meehan, Amanda S Makowiecki,
Je�rey F Glusman, John W Daily, Gregory B Rieker, Peter E Hamlington
Theoretical and Computational Fluid Dynamics (2020-09-01) https://doi.org/gk8ssc
DOI: 10.1007/s00162-020-00548-6

Formation and mass growth of axion stars in axion miniclusters
Benedikt Eggemeier, Jens C Niemeyer
Physical Review D (2019-09-23) https://doi.org/grp7h3
DOI: 10.1103/physrevd.100.063528

Formation of in�aton halos after in�ation
Benedikt Eggemeier, Jens C Niemeyer, Richard Easther
Physical Review D (2021-03-22) https://doi.org/f3g3
DOI: 10.1103/physrevd.103.063525

Gravitational collapse in the postin�ationary Universe
Benedikt Eggemeier, Bodo Schwabe, Jens C Niemeyer, Richard Easther
Physical Review D (2022-01-12) https://doi.org/grp7hm
DOI: 10.1103/physrevd.105.023516

A hybrid nodal-staggered pseudo-spectral electromagnetic particle-in-cell method with
�nite-order centering
Edoardo Zoni, Remi Lehe, Olga Shapoval, Daniel Belkin, Neil Zaïm, Luca Fedeli, Henri Vincenti,
Jean-Luc Vay
Computer Physics Communications (2022-10) https://doi.org/grp7hk
DOI: 10.1016/j.cpc.2022.108457

CHOLLA: A NEW MASSIVELY PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL
SIMULATION
Evan E Schneider, Brant E Robertson
The Astrophysical Journal Supplement Series (2015-04-10) https://doi.org/gr2xqz
DOI: 10.1088/0067-0049/217/2/24

The Role of Out�ows, Radiation Pressure, and Magnetic Fields in Massive Star Formation
Anna L Rosen, Mark R Krumholz
The Astronomical Journal (2020-07-23) https://doi.org/grk7k9
DOI: 10.3847/1538-3881/ab9abf

Massive-star Formation via the Collapse of Subvirial and Virialized Turbulent Massive
Cores
Anna L Rosen, Pak Shing Li, Qizhou Zhang, Blakesley Burkhart
The Astrophysical Journal (2019-12-16) https://doi.org/grk7mc
DOI: 10.3847/1538-4357/ab54c6

An unstable truth: how massive stars get their mass
Anna L Rosen, Mark R Krumholz, Christopher F McKee, Richard I Klein
Monthly Notices of the Royal Astronomical Society (2016-08-25) https://doi.org/f9rwrm
DOI: 10.1093/mnras/stw2153

Revealing the physical properties of gas accreting to haloes in the EAGLE simulations
Ruby J Wright, Claudia del P Lagos, Chris Power, Camila A Correa
Monthly Notices of the Royal Astronomical Society (2021-04-17) https://doi.org/gqsz55
DOI: 10.1093/mnras/stab1057

Barred spiral galaxies in modi�ed gravity theories

https://doi.org/gk8ssc
https://doi.org/10.1007/s00162-020-00548-6
https://doi.org/grp7h3
https://doi.org/10.1103/physrevd.100.063528
https://doi.org/f3g3
https://doi.org/10.1103/physrevd.103.063525
https://doi.org/grp7hm
https://doi.org/10.1103/physrevd.105.023516
https://doi.org/grp7hk
https://doi.org/10.1016/j.cpc.2022.108457
https://doi.org/gr2xqz
https://doi.org/10.1088/0067-0049/217/2/24
https://doi.org/grk7k9
https://doi.org/10.3847/1538-3881/ab9abf
https://doi.org/grk7mc
https://doi.org/10.3847/1538-4357/ab54c6
https://doi.org/f9rwrm
https://doi.org/10.1093/mnras/stw2153
https://doi.org/gqsz55
https://doi.org/10.1093/mnras/stab1057

69.

70.

71.

72.

73.

74.

75.

76.

77.

Mahmood Roshan, Indranil Banik, Neda Ghafourian, Ingo Thies, Benoit Famaey, Elena Asencio,
Pavel Kroupa
Monthly Notices of the Royal Astronomical Society (2021-03-08) https://doi.org/gqsz57
DOI: 10.1093/mnras/stab651

Stellar splashback: the edge of the intracluster light
Alis J Deason, Kyle A Oman, Azadeh Fattahi, Matthieu Schaller, Mathilde Jauzac, Yuanyuan
Zhang, Mireia Montes, Yannick M Bahé, Claudio Dalla Vecchia, Scott T Kay, Tilly A Evans
Monthly Notices of the Royal Astronomical Society (2020-11-19) https://doi.org/gqsz54
DOI: 10.1093/mnras/staa3590

ENZO: AN ADAPTIVE MESH REFINEMENT CODE FOR ASTROPHYSICS
Greg L Bryan, Michael L Norman, Brian W O'Shea, Tom Abel, John H Wise, Matthew J Turk,
Daniel R Reynolds, David C Collins, Peng Wang, Samuel W Skillman, …
The Astrophysical Journal Supplement Series (2014-03-20) https://doi.org/gfx7v2
DOI: 10.1088/0067-0049/211/2/19

COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE
ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES
Alan P Boss, Sandra A Keiser
The Astrophysical Journal (2013-02-01) https://doi.org/gkmgb4
DOI: 10.1088/0004-637x/764/2/136

Predicting Localized Primordial Star Formation with Deep Convolutional Neural
Networks
Azton I Wells, Michael L Norman
The Astrophysical Journal Supplement Series (2021-06-01) https://doi.org/grk7mf
DOI: 10.3847/1538-4365/abfa17

Connecting Primordial Star-forming Regions and Second-generation Star Formation in
the Phoenix Simulations
Azton I Wells, Michael L Norman
The Astrophysical Journal (2022-06-01) https://doi.org/grk7md
DOI: 10.3847/1538-4357/ac6c87

The birth of a galaxy – III. Propelling reionization with the faintest galaxies
John H Wise, Vasiliy G Demchenko, Martin T Halicek, Michael L Norman, Matthew J Turk, Tom
Abel, Britton D Smith
Monthly Notices of the Royal Astronomical Society (2014-06-26) https://doi.org/grk7k6
DOI: 10.1093/mnras/stu979

Evolution of Primordial Magnetic Fields during Large-scale Structure Formation
Salome Mtchedlidze, Paola Domínguez-Fernández, Xiaolong Du, Axel Brandenburg, Tina
Kahniashvili, Shane O’Sullivan, Wolfram Schmidt, Marcus Brüggen
The Astrophysical Journal (2022-04-01) https://doi.org/gp32mc
DOI: 10.3847/1538-4357/ac5960

A Simple Model for Mixing and Cooling in Cloud–Wind Interactions
Matthew W Abruzzo, Greg L Bryan, Drummond B Fielding
The Astrophysical Journal (2022-02-01) https://doi.org/gqsz6g
DOI: 10.3847/1538-4357/ac3c48

Type Ia supernova ejecta–donor interaction: explosion model comparison
C McCutcheon, Y Zeng, Z-W Liu, RG Izzard, K-C Pan, H-L Chen, Z Han
Monthly Notices of the Royal Astronomical Society (2022-05-10) https://doi.org/gqsz58

https://doi.org/gqsz57
https://doi.org/10.1093/mnras/stab651
https://doi.org/gqsz54
https://doi.org/10.1093/mnras/staa3590
https://doi.org/gfx7v2
https://doi.org/10.1088/0067-0049/211/2/19
https://doi.org/gkmgb4
https://doi.org/10.1088/0004-637x/764/2/136
https://doi.org/grk7mf
https://doi.org/10.3847/1538-4365/abfa17
https://doi.org/grk7md
https://doi.org/10.3847/1538-4357/ac6c87
https://doi.org/grk7k6
https://doi.org/10.1093/mnras/stu979
https://doi.org/gp32mc
https://doi.org/10.3847/1538-4357/ac5960
https://doi.org/gqsz6g
https://doi.org/10.3847/1538-4357/ac3c48
https://doi.org/gqsz58
https://doi.org/10.1093/mnras/stac1275

78.

79.

80.

81.

82.

83.

84.

85.

86.

DOI: 10.1093/mnras/stac1275

Exploring Fundamentally Three-dimensional Phenomena in High-�delity Simulations of
Core-collapse Supernovae
Evan P O’Connor, Sean M Couch
The Astrophysical Journal (2018-09-25) https://doi.org/gjctnx
DOI: 10.3847/1538-4357/aadcf7

Implementing primordial binaries in simulations of star cluster formation with a hybrid
MHD and direct <i>N</i>-body method
Claude Cournoyer-Cloutier, Aaron Tran, Sean Lewis, Joshua E Wall, William E Harris, Mordecai-
Mark Mac Low, Stephen LW McMillan, Simon Portegies Zwart, Alison Sills
Monthly Notices of the Royal Astronomical Society (2020-12-18) https://doi.org/grk7kz
DOI: 10.1093/mnras/staa3902

Collisional N-body Dynamics Coupled to Self-gravitating Magnetohydrodynamics Reveals
Dynamical Binary Formation
Joshua E Wall, Stephen LW McMillan, Mordecai-Mark Mac Low, Ralf S Klessen, Simon Portegies
Zwart
The Astrophysical Journal (2019-12-10) https://doi.org/grk7mb
DOI: 10.3847/1538-4357/ab4db1

Modeling of the E�ects of Stellar Feedback during Star Cluster Formation Using a Hybrid
Gas and N-Body Method
Joshua E Wall, Mordecai-Mark Mac Low, Stephen LW McMillan, Ralf S Klessen, Simon Portegies
Zwart, Andrew Pellegrino
The Astrophysical Journal (2020-12-01) https://doi.org/gphr2s
DOI: 10.3847/1538-4357/abc011

Winds in Star Clusters Drive Kolmogorov Turbulence
Monica Gallegos-Garcia, Blakesley Burkhart, Anna L Rosen, Jill P Naiman, Enrico Ramirez-Ruiz
The Astrophysical Journal Letters (2020-08-01) https://doi.org/grk7mg
DOI: 10.3847/2041-8213/ababae

The AGORA High-resolution Galaxy Simulations Comparison Project. III. Cosmological
Zoom-in Simulation of a Milky Way–mass Halo
Santi Roca-Fàbrega, Ji-hoon Kim, Loic Hausammann, Kentaro Nagamine, Alessandro Lupi,
Johnny W Powell, Ikkoh Shimizu, Daniel Ceverino, Joel R Primack, Thomas R Quinn, …
The Astrophysical Journal (2021-08-01) https://doi.org/gqsz6d
DOI: 10.3847/1538-4357/ac088a

gamer-2: a GPU-accelerated adaptive mesh re�nement code – accuracy, performance,
and scalability
Hsi-Yu Schive, John A ZuHone, Nathan J Goldbaum, Matthew J Turk, Massimo Gaspari, Chin-Yu
Cheng
Monthly Notices of the Royal Astronomical Society (2018-09-24) https://doi.org/gkvtzd
DOI: 10.1093/mnras/sty2586

The galactic dust-up: modelling dust evolution in FIRE
Caleb R Choban, Dušan Kereš, Philip F Hopkins, Karin M Sandstrom, Christopher C Hayward,
Claude-André Faucher-Giguère
Monthly Notices of the Royal Astronomical Society (2022-06-07) https://doi.org/gqsz59
DOI: 10.1093/mnras/stac1542

Stellar angular momentum can be controlled from cosmological initial conditions

https://doi.org/10.1093/mnras/stac1275
https://doi.org/gjctnx
https://doi.org/10.3847/1538-4357/aadcf7
https://doi.org/grk7kz
https://doi.org/10.1093/mnras/staa3902
https://doi.org/grk7mb
https://doi.org/10.3847/1538-4357/ab4db1
https://doi.org/gphr2s
https://doi.org/10.3847/1538-4357/abc011
https://doi.org/grk7mg
https://doi.org/10.3847/2041-8213/ababae
https://doi.org/gqsz6d
https://doi.org/10.3847/1538-4357/ac088a
https://doi.org/gkvtzd
https://doi.org/10.1093/mnras/sty2586
https://doi.org/gqsz59
https://doi.org/10.1093/mnras/stac1542

87.

88.

89.

90.

91.

92.

93.

94.

95.

Corentin Cadiou, Andrew Pontzen, Hiranya V Peiris
arXiv (2022) https://doi.org/grk7mh
DOI: 10.48550/arxiv.2206.11913

Accurate tracer particles of baryon dynamics in the adaptive mesh re�nement code
Ramses
Corentin Cadiou, Yohan Dubois, Christophe Pichon
Astronomy & Astrophysics (2019-01) https://doi.org/gf42rj
DOI: 10.1051/0004-6361/201834496

Gravitational torques dominate the dynamics of accreted gas at <i>z</i> &gt; 2
Corentin Cadiou, Yohan Dubois, Christophe Pichon
Monthly Notices of the Royal Astronomical Society (2022-06-17) https://doi.org/grk7k4
DOI: 10.1093/mnras/stac1663

Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with
spin-driven black hole feedback
RS Beckmann, Y Dubois, P Guillard, P Salome, V Olivares, F Polles, C Cadiou, F Combes, S
Hamer, MD Lehnert, G Pineau des Forets
Astronomy & Astrophysics (2019-10-21) https://doi.org/grk7kw
DOI: 10.1051/0004-6361/201936188

Gas accretion and ram pressure stripping of haloes in void walls
BB Thompson, R Smith, K Kraljic
Monthly Notices of the Royal Astronomical Society (2022-10-19) https://doi.org/grk7k5
DOI: 10.1093/mnras/stac2963

The Gaia-ESO Survey: matching chemodynamical simulations to observations of the
Milky Way
BB Thompson, CG Few, M Bergemann, BK Gibson, BA MacFarlane, A Serenelli, G Gilmore, S
Randich, A Vallenari, EJ Alfaro, … S Zaggia
Monthly Notices of the Royal Astronomical Society (2017-09-11) https://doi.org/gc8ws7
DOI: 10.1093/mnras/stx2316

Turnaround radius of galaxy clusters in <i>N</i>-body simulations
Giorgos Korkidis, Vasiliki Pavlidou, Konstantinos Tassis, Evangelia Ntormousi, Theodore N
Tomaras, Konstantinos Kovlakas
Astronomy & Astrophysics (2020-07) https://doi.org/gqsz52
DOI: 10.1051/0004-6361/201937337

3D volume rendering of geophysical data using the yt platform
Christopher Havlin, Benjamin Holtzman, Kacper Kowalik, Madicken Munk, Samantha Walkow,
Matthew Turk
Wiley (2021-02-10) https://doi.org/grk7kv
DOI: 10.1002/essoar.10506118.2

Understanding Heating in Active Region Cores through Machine Learning. I. Numerical
Modeling and Predicted Observables
WT Barnes, SJ Bradshaw, NM Viall
The Astrophysical Journal (2019-07-20) https://doi.org/grk7m6
DOI: 10.3847/1538-4357/ab290c · PMID: 31920207 · PMCID: PMC6951256

swiftsimio: A Python library for reading SWIFT data
Josh Borrow, Alexei Borrisov
Journal of Open Source Software (2020-08-01) https://doi.org/gqsz6b

https://doi.org/grk7mh
https://doi.org/10.48550/arxiv.2206.11913
https://doi.org/gf42rj
https://doi.org/10.1051/0004-6361/201834496
https://doi.org/grk7k4
https://doi.org/10.1093/mnras/stac1663
https://doi.org/grk7kw
https://doi.org/10.1051/0004-6361/201936188
https://doi.org/grk7k5
https://doi.org/10.1093/mnras/stac2963
https://doi.org/gc8ws7
https://doi.org/10.1093/mnras/stx2316
https://doi.org/gqsz52
https://doi.org/10.1051/0004-6361/201937337
https://doi.org/grk7kv
https://doi.org/10.1002/essoar.10506118.2
https://doi.org/grk7m6
https://doi.org/10.3847/1538-4357/ab290c
https://www.ncbi.nlm.nih.gov/pubmed/31920207
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951256
https://doi.org/gqsz6b
https://doi.org/10.21105/joss.02430

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

DOI: 10.21105/joss.02430

sígame v3: Gas Fragmentation in Postprocessing of Cosmological Simulations for More
Accurate Infrared Line Emission Modeling
Karen Pardos Olsen, Blakesley Burkhart, Mordecai-Mark Mac Low, Robin G Treß, Thomas R
Greve, David Vizgan, Jay Motka, Josh Borrow, Gergö Popping, Romeel Davé, … Desika Narayanan
The Astrophysical Journal (2021-11-01) https://doi.org/gqsz6f
DOI: 10.3847/1538-4357/ac20d4

Sensitivity of non-radiative cloud-wind interactions to the hydrodynamics solver
Joey Braspenning, Joop Schaye, Josh Borrow, Matthieu Schaller
arXiv (2022) https://doi.org/grp7hn
DOI: 10.48550/arxiv.2203.13915

AstroBlend: An astrophysical visualization package for Blender
JP Naiman
Astronomy and Computing (2016-04) https://doi.org/f8phr9
DOI: 10.1016/j.ascom.2016.02.002

The anatomy of a star-forming galaxy: pressure-driven regulation of star formation in
simulated galaxies
SM Benincasa, J Wadsley, HMP Couchman, BW Keller
Monthly Notices of the Royal Astronomical Society (2016-07-20) https://doi.org/f86kmr
DOI: 10.1093/mnras/stw1741

The growth of black holes from Population III remnants in the Renaissance simulations
Britton D Smith, John A Regan, Turlough P Downes, Michael L Norman, Brian W O’Shea, John H
Wise
Monthly Notices of the Royal Astronomical Society (2018-08-02) https://doi.org/gfn3dp
DOI: 10.1093/mnras/sty2103

Parthenon—a performance portable block-structured adaptive mesh re�nement
framework
Philipp Grete, Joshua C Dolence, Jonah M Miller, Joshua Brown, Ben Ryan, Andrew Gaspar,
Forrest Glines, Sriram Swaminarayan, Jonas Lippuner, Clell J Solomon, … Luke F Roberts
The International Journal of High Performance Computing Applications (2022-12-13)
https://doi.org/grzcrd
DOI: 10.1177/10943420221143775

A Fast Voxel Traversal Algorithm for Ray Tracing
John Amanatides, Andrew Woo
EG 1987-Technical Papers (1987) https://doi.org/gq2qd9
DOI: 10.2312/egtp.19871000

An E�cient Parametric Algorithm for Octree Traversal
Jorge Revelles, Carlos Ureña, Miguel Lastra
Journal of WSCG http://wscg.zcu.cz/wscg2000/Papers_2000/X31.pdf

Gravitational torques dominate the dynamics of angular momentum of the accreted gas
at $z>2$
Corentin Cadiou, Yohan Dubois, Christophe Pichon
in prep.

unyt: Handle, manipulate, and convert data with units in Python
Nathan J. Goldbaum, John A. ZuHone, Matthew J. Turk, Kacper Kowalik, Anna L. Rosen
Journal of Open Source Software (2018-08-14) https://doi.org/gsnf9k

https://doi.org/10.21105/joss.02430
https://doi.org/gqsz6f
https://doi.org/10.3847/1538-4357/ac20d4
https://doi.org/grp7hn
https://doi.org/10.48550/arxiv.2203.13915
https://doi.org/f8phr9
https://doi.org/10.1016/j.ascom.2016.02.002
https://doi.org/f86kmr
https://doi.org/10.1093/mnras/stw1741
https://doi.org/gfn3dp
https://doi.org/10.1093/mnras/sty2103
https://doi.org/grzcrd
https://doi.org/10.1177/10943420221143775
https://doi.org/gq2qd9
https://doi.org/10.2312/egtp.19871000
http://wscg.zcu.cz/wscg2000/Papers_2000/X31.pdf
https://doi.org/gsnf9k
https://doi.org/10.21105/joss.00809

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

DOI: 10.21105/joss.00809

matplotlib/matplotlib: REL: v3.7.0rc1
Thomas A Caswell, Antony Lee, Elliott Sales De Andrade, Michael Droettboom, Tim Ho�mann,
Jody Klymak, John Hunter, Eric Firing, David Stansby, Nelle Varoquaux, … Nikita Kniazev
Zenodo (2023-01-25) https://doi.org/grqcmh
DOI: 10.5281/zenodo.7570264

The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project
and the Latest Major Release (v5.0) of the Core Package
Astropy Collaboration, Adrian M Price-Whelan, Pey Lian Lim, Nicholas Earl, Nathaniel Starkman,
Larry Bradley, David L Shupe, Aarya A Patil, Lia Corrales, CE Brasseur, … Astropy Project
Contributors
(2022-08) https://arxiv.org/abs/2206.14220
DOI: 10.3847/1538-4357/ac7c74

Jupyter: Thinking and Storytelling With Code and Data
Brian E Granger, Fernando Perez
Computing in Science & Engineering (2021-03-01) https://doi.org/gjkwx2
DOI: 10.1109/mcse.2021.3059263

Jupyter notebooks ? A publishing format for reproducible computational work�ows
Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, … Jupyter
development team
Positioning and power in academic publishing: Players, agents and agendas (2016)
https://eprints.soton.ac.uk/403913/

MPI: A message-passing interface standard version 4.0
Message Passing Interface Forum
(2021-06) https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

ASCL.net - RADMC-3D: A multi-purpose radiative transfer tool http://ascl.net/1202.015

Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical
Simulations
Cameron B Hummels, Britton D Smith, Devin W Silvia
The Astrophysical Journal (2017-09-20) https://doi.org/gcx4th
DOI: 10.3847/1538-4357/aa7e2d

powderday: Dust Radiative Transfer for Galaxy Simulations
Desika Narayanan, Matthew J Turk, Thomas Robitaille, Ashley J Kelly, BConnor McClellan, Ray S
Sharma, Prerak Garg, Matthew Abruzzo, Ena Choi, Charlie Conroy, … John H Wise
The Astrophysical Journal Supplement Series (2021-01-01) https://doi.org/gpxcx8
DOI: 10.3847/1538-4365/abc487

The formation of submillimetre-bright galaxies from gas infall over a billion years
Desika Narayanan, Matthew Turk, Robert Feldmann, Thomas Robitaille, Philip Hopkins, Robert
Thompson, Christopher Hayward, David Ball, Claude-André Faucher-Giguère, Dušan Kereš
Nature (2015-09-23) https://doi.org/f7r445
DOI: 10.1038/nature15383

HYPERION: an open-source parallelized three-dimensional dust continuum radiative
transfer code
TP Robitaille
Astronomy & Astrophysics (2011-12) https://doi.org/ckp63w

https://doi.org/10.21105/joss.00809
https://doi.org/grqcmh
https://doi.org/10.5281/zenodo.7570264
https://arxiv.org/abs/2206.14220
https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/gjkwx2
https://doi.org/10.1109/mcse.2021.3059263
https://eprints.soton.ac.uk/403913/
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
http://ascl.net/1202.015
https://doi.org/gcx4th
https://doi.org/10.3847/1538-4357/aa7e2d
https://doi.org/gpxcx8
https://doi.org/10.3847/1538-4365/abc487
https://doi.org/f7r445
https://doi.org/10.1038/nature15383
https://doi.org/ckp63w
https://doi.org/10.1051/0004-6361/201117150

116.

117.

118.

119.

120.

121.

122.

123.

124.

DOI: 10.1051/0004-6361/201117150

ytree: merger-tree toolkit
Britton Smith, Meagan Lang
Zenodo (2018-02-16) https://doi.org/gcx4x2
DOI: 10.5281/zenodo.1174374

Simulating X-ray Observations with Python
John ZuHone, Veronica Bi�, Eric Hallman, Scott Randall, Adam Foster, Christian Schmid
Proceedings of the Python in Science Conference (2014) https://doi.org/gpxcx7
DOI: 10.25080/majora-14bd3278-010

Observing simulated galaxy clusters with phox: a novel X-ray photon simulator
V Bi�, K Dolag, H Böhringer, G Lemson
Monthly Notices of the Royal Astronomical Society (2012-01) https://doi.org/fz38qm
DOI: 10.1111/j.1365-2966.2011.20278.x

Investigating the velocity structure and X-ray observable properties of simulated galaxy
clusters with PHOX
V Bi�, K Dolag, H Böhringer
Monthly Notices of the Royal Astronomical Society (2012-10-29) https://doi.org/f42dgv
DOI: 10.1093/mnras/sts120

Houdini for Astrophysical Visualization
JP Naiman, Kalina Borkiewicz, AJ Christensen
Publications of the Astronomical Society of the Paci�c (2017-04-18) https://doi.org/f96hcf
DOI: 10.1088/1538-3873/aa51b3

SI2-SSI: Inquiry-Focused Volumetric Data Analysis Across Scienti�c Domains: Sustaining
and Expanding the yt Community
Matthew Turk, Nathan Goldbaum, 0000-0002-6226-7689, Leigh Orf
�gshare (2017) https://doi.org/grmmjc
DOI: 10.6084/m9.�gshare.2061465.v1

SI2-SSE: yt: Reusable Components for Simulating, Analyzing and Visualizing Astrophysical
Systems
Matthew Turk
�gshare (2014) https://doi.org/grmmjd
DOI: 10.6084/m9.�gshare.909413.v1

Collaborative research: Elements: Shared data-delivery infrastructure to enable
discovery with the next generation of Dark Matter and Computational Astrophysics
experiments
Amy Roberts, Matthew Turk
Zenodo (2020-10-28) https://doi.org/grmmjb
DOI: 10.5281/zenodo.4158589

Corrective commit probability: a measure of the e�ort invested in bug �xing
Idan Amit, Dror G Feitelson
Software Quality Journal (2021-08-05) https://doi.org/grp6mj
DOI: 10.1007/s11219-021-09564-z

Acknowledgments

https://doi.org/10.1051/0004-6361/201117150
https://doi.org/gcx4x2
https://doi.org/10.5281/zenodo.1174374
https://doi.org/gpxcx7
https://doi.org/10.25080/majora-14bd3278-010
https://doi.org/fz38qm
https://doi.org/10.1111/j.1365-2966.2011.20278.x
https://doi.org/f42dgv
https://doi.org/10.1093/mnras/sts120
https://doi.org/f96hcf
https://doi.org/10.1088/1538-3873/aa51b3
https://doi.org/grmmjc
https://doi.org/10.6084/m9.figshare.2061465.v1
https://doi.org/grmmjd
https://doi.org/10.6084/m9.figshare.909413.v1
https://doi.org/grmmjb
https://doi.org/10.5281/zenodo.4158589
https://doi.org/grp6mj
https://doi.org/10.1007/s11219-021-09564-z

The authors of this paper would like to extend their deepest gratitude to the many, many individual
and institutions that have contributed, directly or indirectly, to the growth of both yt and the yt
community.

We particularly thank KIPAC and SLAC at Stanford, the University of California at San Diego and Santa
Cruz, the High-Performance Astro Computing Center, Columbia University, the University of Illinois,
University of Colorado at Boulder, University of Edinburgh, the scienti�c Python community,
NumFOCUS,

MT dedicates this paper to the memory of Michael S. Warren, who was both friend and mentor to
several of us on the development team. Mike passed away during the �nal stages of its completion,
but his in�uence was felt deeply along the way. Mike was a truly inspirational person, and provided
deep mentorship and guidance to multiple of the authors of this paper – and stepped in with
encouragement, advice and friendship at two speci�c, critical junctures in the development history of
yt. Thank you, Mike, and we miss you. Tomorrow, we’re gonna do Stonehenge.

