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Introduction and Problem Statement

• When would we want to know uranium enrichment
– Enrichment and fuel fabrication plants
– Waste characterization
– Homeland security activities
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Introduction and Problem Statement

• Uranium enrichment algorithms should be able to 
– Use a NaI detector

• Greater efficiency over HPGe
• Does not require mechanical cooling
• Cheaper

– Operate in the hands of a non-expert 

• Operate in a range of detector calibrations

• Operate in areas with unknown background

– Operate quickly without sacrificing accuracy
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Proposed Solution
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• Artificial Neural Networks (ANNs)
– Biologic inspired mapping from ℝN → ℝM

– Each neuron is a weighted sum of the previous layer passed through a nonlinear 

function

• Knowledge stored in weights 

• Benefit of using ANNs for isotope quantification in NaI spectra
– ANNs can learn to incorporate abstract spectral features
– Removes the need for user-defined heuristics
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Proposed Solution
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• Our implementation

– Input - log-scaled spectrum

– Output - component contributions

– Between 1 and 4 hidden layers

• Additional hidden layers add capacity to the model
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• Published work applying ANNs to isotope identification is promising
– ANNs can identify isotope mixtures in NaI ᷏-ray spectra using whole spectrum 

(Kamuda and Sullivan, 2017)
– ANNs can perform uranium enrichment measurements in ᷏-ray spectra (Vigneron, 

1996) 
– ANN applications to isotope identification usually involve dimension reduction 

techniques
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Published Work
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Experiment

• Simulated 2” x 2” NaI spectra dataset to represent HEU
– 10,000 spectra in training set

• Taught three neural networks to quantify isotopes in enriched uranium spectra
– Input is full spectrum
– Input is principal component analysis (PCA) reduced spectrum

• First 10 principal components used
– Represents 90% of the variance in the data

– Input is autoencoder (AE) reduced spectrum
• Neural network based nonlinear dimension reduction method
• Used 10 hidden layer nodes
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GADRAS Simulated Training Details

• Library includes main ᷏-ray producing isotopes in enriched uranium
– U235, U238, U234, Th231, Th234, Pa234m, and background

• Spectrum parameters: 
– All isotopes in random combinations
– Count rate on detector:

• 102 - 104 counts per second
– Source is simulated to be behind uranium shield to teach the ANN self attenuation

• 0.01 cm -  0.25 cm
– Collection time ranges from:

• 10 seconds - 10 minutes
– Spectrum calibration:

• Default: highest channel corresponds to 3 meV
• Each spectrum rebinned to move the 186 keV peak within ±10 channels
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Training Results - Optimal network 
structures

• Optimal structure found using a random hyperparameter search (Bergstra and Bengio, 
2012)

– 60 ANNs searched
– 1 - 4 hidden layers
– 100 - 1000 nodes per layer

• Final ANN structure for:
– Full spectrum input

• 1024-449-205-9
– Autoencoder

• 10-16-316-9
– PCA

• 10-170-40-9
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Training Results

• Final validation set error was similar for 
each method

– Autoencoder performed the worst
– Full spectrum performed the best

• ANN trained using dimension reduction 
techniques stopped learning earlier than 
the full spectrum ANN
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Mean squared error vs training iteration 
for a simulated validation dataset
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Mean Squared Error for Validation Set
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Mean Square Error (10-3)

Isotope Full Spectrum PCA Autoencoder

U235 0.86 3.9 6.9

Pa234m 3.5 4.1 6.6

U238 4.8 5.2 7.37

U234 4.4 6.1 7.1

Th234 5.6 6.4 7.1

Th231 6.0 6.7 7.4

Average 4.2 5.4 7.1

• 1000 spectra simulated using the 
same method as the training set

• ANN performances
– Both dimension reduction 

techniques performed the worst
– Full spectrum performed the 

best
– U235 had a very low error when 

using the full spectrum
– Th231 and Th241 have very 

similar spectrums
• easily confused
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ANN Performance on HEU
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Gamma-ray spectrum of HEU. Collected with 2” x 2” 

NaI in 30 seconds.

Count Contribution Calculated by ANN [%]

Isotope
Unattenuated 
᷏-ray Intensities 

for HEU [%]
full spectrum PCA Autoencoder 

U234 44.0 13.2 ± 0.012 14.6 ± 0.003 12.2 ± 0.001

U235 36.8 32.1 ± 0.022 18.4 ± 0.003 13.9 ± 0.001

Th231 19.0 14.8 ± 0.007 14.2 ± 0.002 13.3 ± 0.001

Others <0.2 39.9 52.8 60.6

• Average ANN response to ten 
30 second spectra of HEU

– Rocky flats shells 
measured at the Nevada 
Test Site

• Each ANN performed poorly on 
these data
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Conclusion

• Three neural networks were trained to perform isotope quantification on enriched uranium 
spectra

• Evidence that using the full spectrum is superior to dimension reduction techniques
– Full spectrum ANN kept learning where the dimension reduction techniques 

plateaued 

• Identifications on HEU were inaccurate
– Implies that either

• ANN are a poor choice for the problem
• The ANN was implemented was not optimal for the problem
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Future Work

• Collect spectra of various uranium enrichment for a validation set

• More accurately simulate volumes of uranium

• Explore other dimension reduction techniques

– Autoencoders

• Different architectures

• Denoising autoencoders

– feature extraction

• Wavelet peak centroid and area extraction

• Directly output enrichment value instead of isotope contributions
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Questions
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Random Hyperparameter Search

• Number of hidden layers
– Unif[1,4]

• Number of nodes in a layer
– LogUnif[102,103]

• Mini-Batch size
– LogUnif[101,102.5]

• Learning rate
– LogUnif[10-6,101]

• L2 Regularization
– LogUnif[10-1,102]

• Dropout rate
– Unif[0,1]
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Full spectrum final Hyperparameters

• layer_1_nodes = 258
• layer_2_nodes = 0
• layer_3_nodes = 0
• layer_4_nodes = 0
• L2_scale_factor  = 0.179264479057
• learning_rate = 0.000114459191534
• dropout_rate  = 0.621314297936
• batch_size    = 255
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PCA Final Hyperparameters

• layer_1_nodes = 170
• layer_2_nodes = 40
• layer_3_nodes = 0
• layer_4_nodes = 0
• L2_scale_factor  = 0.637856144862
• learning_rate = 0.00150010833203
• dropout_rate  = 0.781530068926
• batch_size    = 281
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Autoencoder Final Hyperparameters

• layer_1_nodes = 16
• layer_2_nodes = 316
• layer_3_nodes = 0
• layer_4_nodes = 0
• L2_scale_factor  = 0.163365910653
• learning_rate = 0.000741537071015
• dropout_rate  = 0.662424609832
• batch_size    = 295
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Autoencoder
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Autoencoder and Neural Network
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