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Introduction

Mutliple new reactor designs will require High-Assay Low-Enriched Uranium
(HALEU) fuel, which allows for

• Longer cycle times

• Higher burnups

To meet the HALEU demand, the U.S. Department of Energy (DOE) has
proposed two methods [2]:

• Recovery and downblending of High-Enriched Uranium (HEU)

• Enrichment of natural uranium

Determining which method to use, or how to combine them, will be based on
the material requirements of the reactor(s) deployed.
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Objectives

This work simulates multiple transition scenarios to HALEU-fueled reactors and
aims to

• Quantify material requirements of the transition to reactors fueled by
HALEU

• Number of reactors deployed
• Ability to meet energy demand
• Mass of uranium supplied to reactors
• Separative Work Unit (SWU) capacity to enrich uranium

• Compare the material requirements of a small reactor with a long cycle time
and a medium-sized reactor with on-line refueling

• Identify how each HALEU production method can be used to meet the
material requirements
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Methodology

Simulated 5 fuel cycle scenarios in
Cyclus [3]

• Scenario 1: Current fleet of
Light Water Reactors (LWRs)

• Scenario 2: No growth
transition to Ultra Safe Nuclear
Corporation (USNC) Micro
Modular Reactor (MMR)TM

• Scenario 3: No growth
transition to X-energy Xe-100

• Scenario 4: 1% growth
transition to USNC MMRTM

• Scenario 5: 1% growth
transition to X-energy Xe-100

Table 1: Advanced reactor design
specifications

Design Cri-
teria

USNC
MMRTM

X-Energy
Xe-100

Reactor
Type

Modular
HTGR

Modular
HTGR

Power Out-
put (MWe)

10 75

Enrichment
(% 235U)

13 15.5

Cycle
Length
(years)

20 Online Re-
fuel

Fuel Form TRISO
Compacts

TRISO
Pebbles

Reactor Life-
time

20 years 60 years
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Simulation Details

• Simulations model
reactor deployment from
1965-2090

• LWR commission dates
are obtained from the
IAEA Power Reactor
Information System
(PRIS) database [1]

• LWRs are assumed to
operate for 60 years,
unless they were
decommissioned by
December 2020

• Transitions begin in 2025

• Timestep of one month
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Figure 1: Fuel cycle facilities and material flow
between facilities.

7 / 16



Introduction
Methodology

Results
Conclusions

Outline

1 Introduction

2 Methodology

3 Results

4 Conclusions

8 / 16



Introduction
Methodology

Results
Conclusions

Reactor Deployment

• The last LWR is decommissied
in 2076

• In the no growth scenarios
(Scenarios 2 and 3) the
advanced reactors are deployed
starting in June 2038

• In the 1% growth scenarios
(Scenarios 4 and 5) the
advanced reactors are deployed
starting in July 2036

• The maximum number of
advanced reactors deployed at
one time in Scenarios 2-5 are
5962, 50, 11474, and 51
reactors, respectively

Figure 2: Reactor deployment schedule
for LWRs and advanced reactors.
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Energy

• Energy produced by LWRs in
Scenario 1 in 2025 is 59.613
GWe-y

• Scenarios 2 and 3 do not meet
demand between 2038-2053

• Scenario 4 does not meet
demand between 2035-2054

• Scenario 5 does not meet
demand between 3035-2048

• Noticable deviations from
demand in Scenarios 2, 4 when
new reactors are deployed
secWEV;UW

Figure 3: Energy produced per year by
all reactors in Scenarios 1-3 (top) and
Scenarios 1, 4, 5 (bottom)
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Uranium Mass Supply

• All scenarios have the same
uranium demands until
advanced reactors are deployed

• Large peaks in Scenarios 2 and
4 correspond to the deployment
of new reactors

• Less variation with time in the
uranium supplied to reactors for
Scenarios 3 and 5 than
Scenarios 2 and 4

• There is a 6 month delay in
when advanced reactors are
deployed and fueled in Scenario
4

Figure 4: Uranium mass sent to all
reactors (top) and only advanced
reactors (bottom) 11 / 16
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SWU Requirements

• Follows similar pattern to
uranium mass

• Scenarios 2 and 4 require the
most SWU because of the large
mass of urnaium, despite a
lower enrichment level for the
advanced reactors Scenarios 3
and 5

Figure 5: SWU required to produce
enriched uranium for all reactors (top)
and only advanced reactors (bottom)
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Conclusions

• Simulated 5 fuel cycle scenarios to investigate the material requirements of
deploying HALEU-fueled reactors

• Transitions to the X-energy Xe-100 reactor are better able to meet the
energy demand of the scenarios

• Transitions to the USNC MMRTM have significantly more material
requirements than transitions to the X-energy Xe-100

• Changing to a 1% growth demand model requires advanced reactors to be
deployed 2 years earlier

Ongoing Work

• Incorporate LWR license expiration dates

• Increase the amount of time in the scenario, change end date to 2125

• Determine how much HALEU can be produced by downblending HEU
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