Parameter interpolation for MSR core physics modules

2019 Technical Workshop on Fuel Cycle Simulation Physics & Technology Modeling

Kyle Anderson Steve Skutnik, Alex Wheeler, Ondrej Chvala

Outline

- Overall Research Project and Motivation
- Reactor Core Physics Module
- Reactor Data Libraries
- Interpolation and Spacing of Libraries

Project Goal and Motivation

- Project Goal is:
 - Develop a modular software framework to allow the testing of MC&A methods on a variety of MSR designs

- The Motivation is:
 - No reactors to test methods on
 - Large variety in the design space

Block Diagram of a Simple Model

Reactor Core Physics Module - Requirements

- Requirements:
 - Calculate depletion of fuel salt and PK data
 - Fast computational solution time
 - Ability to cover large design space

Reactor Core Physics Module - Methodology

- Requirements:
 - Calculate depletion of fuel salt and PK data
 - Fast computational solution time
 - Ability to cover large design space
- Methodology:
 - Utilize pre-generated collapse data libraries to run point depletion calculations

Reactor Core Physics Module - Methodology

- Requirements:
 - Calculate depletion of fuel salt and PK data
 - Fast computational solution time
 - Ability to cover large design space
- Module Methodology:
 - Break up module by large scale design parameter (Fuel cycle, Spectrum type, etc.)
 - Interpolate over smaller design parameters

Reactor Core Physics Module Diagram

On Run Startup

Interpolating between Data Libraries

Reactor data libraries are interpolated over transition matrices

- The transition matrices can be studied to understand:
 - Importance of parameter
 - Predicted error in interpolation

Thermal FLIBE Group Library

Parameter	Range	Spacing
Uranium Enrichment [wt. % U-235]	2 - 10	1
Lattice Pitch [cm]	10 - 50	10
Salt-Moderator Ratio	0.1 - 0.5	0.1
Number of Fuel Channels	7 - 169	Varies

Averaged Effect of Lattice Pitch

Pu-239 Mass Difference

Library Spacing Algorithm

Library Spacing Algorithm

Determining Next Libraries to Interpolate

 Potential to use difference in transition matrix value to determine next library

Acknowledgments

- This work was supported by:
 - A Nuclear Energy University Programs (NEUP) grant sponsored by the U.S.
 Department of Energy, Office of Nuclear Energy, award number DE-NE0008793
 - U.S. Nuclear Regulatory Commission, Grant Number NRC-HQ-60

Summary

- A modular framework for testing MC&A methods on MSRs is being developed
- Core physics in the framework is being done using reactor data libraries
- The spacing and interpolation of the libraries is being studied through transition matrices

Questions or Clarifications?

Additional Clarification Slides:

Molten Salt Reactor Design Space Definition of Transition Matrix Averaged Effects of Enrichment and Salt-Moderator Ratio

Image Source: U.S. Dept. of Energy

MSR Design Space

Transition Matrix

Nuclide Generation, Depletion, and Decay

$$\frac{dN_i}{dt} = \sum_{j \neq i} \left(l_{ij} \lambda_j + f_{ij} \sigma_j \phi \right) N_j(t) - \left(\lambda_i + \sigma_i \phi \right) N_i(t) + S_i(t)$$

Term Definitions

- N_i = Amount of nuclide i
- l_{ij} = Fractional yield of nuclide i from decay of nuclide j
- λ_j = Decay constant of nuclide j
- f_{ij} = Fraction yield of nuclide I from neutron-induced transmutation of nuclide j
- ϕ = Neutron flux
- S_i = Source term

Transition Matrix

Nuclide Generation, Depletion, and Decay

Averaged Effect of Enrichment

Averaged Effect of Salt-Moderator Ratio

