Coupled CLASS and DONJON5 3D full core calculations and comparison with the neural network approach for fuel cycles involving MOX fueled PWRs

Martin Guillet

École Polytechnique de Montréal / CNRS-IN2P3

June 26, 2019

Martin Guillet (EPM/CNRS-IN2P3)

Introduction

- 2 Full core calculations
- 3 Scenario calculations
 - Elementary scenarios
 - Complex scenarios

Project : full core calculation impact on scenario studies

Current situation

- No full core calculations in scenarios (too costly)
- Infinite assembly extrapolated models (MLP) based on k_{threshold}.

The project

- Build full core models and associated databases
- Build similar neural networks databases
- Run elementary and complex scenarios with effectively coupled full core calculations

Calculation geometries

Figure 1: Quarter core

Figure 2: Assembly

• Complete assembly homogenization and two groups condensation.

Critical boron concentration

• 75% calculation cost reductions and very similar results with linear interpolation

Fuel Map

Initial burnup predictions

Two different refueling schemes are used for UOX and MOX reactors.

Isotopic composition correction

 $Corr_{MO_X} = \frac{\%_{Fissile} - \%_{Ref}}{\Lambda \%}$

Cycle length correction $Corr_T = \frac{T}{T_{Raf}}$

Spatial burnup final prediction

 $BU_{iCorr} = (BU_{iRef} \pm Corr_{MOx} \times \Delta BU_i) \times Corr_{T}$

Martin Guillet (EPM/CNRS-IN2P3)

Fuel Map

UOX burnup prediction accuracy

(a) Burnup at refueling

(c) End of cycle 4

(b) End of cycle 1

(d) Cycle 1 to 4 deviation

Martin Guillet (EPM/CNRS-IN2P3)

Fuel Map

MOX burnup prediction accuracy

• burnup prediction leads to very low bias $(\leq 1 \text{ GWd.t}_{HM}^{-1} \text{ for a 50 GWd.t}_{HM}^{-1} \text{ burnup target}).$

k_{threshold} accurate determination

Figure 7: k_{threshold} determination

Elementary scenarios

• Relative deviation (%) = $\frac{MLP-Full \text{ core diffusion}}{Full \text{ core diffusion}} \times 100$

Comparison of CLASS-MLP and CLASS-DONJON5 results for elementary scenarios

UOX	with fitted k _{threshold} values
Chemical element	Relative deviations (%) on unloaded inventories
Uranium (except ²³⁸ U)	-12 %
Plutonium	+2 %
Minor Actinides	+25 %
MOX	with fitted k _{threshold} values
Chemical element	Relative deviations (%) on unloaded inventories
Plutonium	-4 %
Minor Actinides	+4 %

Complex scenarios with UOX-MOX interactions

Comparison of CLASS-MLP and CLASS-DONJON5 results for complex scenarios

Scenario OneBU	with fitted k _{threshold} values
Chemical element	Relative deviations (%) on end of scenario inventories
Plutonium	+1 %
Minor actinides	+5 %
Scenario TwoBU	with non fitted k _{threshold} values
Chemical element	Relative deviations (%) on end of scenario inventories
Plutonium	+2 %
Minor actinides	+8 %

Scenario TwoBU

Figure 8: Pu and Minor Actinides in fuel cycle (scenario TwoBU)

Conclusion

Not computing full core simulations in scenarios implies :

- \simeq 5 % deviation on loaded ^{235}U inventories (\rightarrow impact on consumed ore)
- \simeq 5 % deviation on unloaded Pu inventories (\rightarrow impact on available fissile materials for reprocessing)
- \simeq 10 % deviation on unloaded MA (\rightarrow impact on long term hot waste inventories)

 $k_{threshold}$ models (varying with isotopic compositions) provides a way to reduce error on Pu inventories by 50 %

End Thank you, any question ?

Complex scenarios description

Scenario OneBU UOX (9 reactors) Starting time (y) 2.0	Burnup (GWd.t ⁻¹ 49.8	MOX (1 reactor) Starting time (y) 25.0	Burnup (GWd.t ⁻¹ _{HM}) 49.8
Scenario TwoBU UOX (9 reactors) Starting time (y) 2.0	Burnup (GWd.t ⁻¹ 45.5	MOX (1 reactor) Starting time (y) 19.5	Burnup (GWd.t ⁻¹ 55.4

Figure 9: Pu and Minor Actinides in fuel cycle (scenario OneBU)

Databases sampling 1/3

Table 1: MULTICOMPO sampling for boron and burnup

Parameter	Number				
Boron concentration (ppm)	0.0, 1375.0 and 2750.0				
Burnup (GWd.t ⁻¹ _{HM})	0 56.2 (23 steps)				

Databases sampling 2/3

Table 2: MULTICOMPO (diffusion database) sampling

UOX Parameter	Sampling
Enrichment (% _{HM})	3.00, 4.00 and 5.00
MOX Parameter	Sampling
Enrichment ($\%_{HM}$) ²³⁸ Pu ($\%_{Pu}$) ²⁴⁰ Pu ($\%_{Pu}$) ²⁴¹ Pu ($\%_{Pu}$) ²⁴² Pu ($\%_{Pu}$) ²⁴¹ Am ($\%_{Pu}$) ²³⁹ Pu ($\%_{Pu}$)	4.50, 6.00, 7.50, 9.00, 10.50, 12.00 and 13.50 0.50 and 5.50 21.50, 26.50 and 31.50 1.50, 10.50 and 19.50 3.50, 8.00 and 12.50 0.01 and 1.75 100 - $(\sum_{j \neq 239} {}^{j}Pu + {}^{241}Am)$

Databases sampling 3/3

Table 3: Neural networks databases sampling

Parameter	Number
UOX random compositions	800
MOX random compositions	5000
Cross-section predictors (by reactor type)	66
Reactivity predictor (by reactor type)	1

Figure 10: Accumulation of Pu in/out MOX reactor (scenario OneBU)

Figure 11: Accumulation of ²³⁵U in/out UOX reactors (scenario OneBU)

Figure 12: Plutonium in stocks (scenario OneBU)

Figure 13: Fissile plutonium in UOX reactors (scenario OneBU)

Figure 14: Fertile plutonium in UOX reactors (scenario OneBU)

Scenario OneBU

Figure 15: Fissile plutonium in MOX reactor (scenario OneBU)

Scenario OneBU

Figure 16: Fertile plutonium in MOX reactor (scenario OneBU)

Scenario TwoBU

Figure 17: Plutonium in stocks (scenario TwoBU)

Loading plans

Figure 18: UOX

Additional content

Figure 19: MOX

Flux map for MOX reactors after 50 EFPD

Figure 20: with UOX load plan

Figure 21: with MOX load plan

Reloading pattern

	Α	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	0
01							E07	H07	K07						
02					NEW										
03				FØ3	NEW	F07	D06	L05	L06	JØ7	NEW	JØ3			
04			C06	NEW	GØ7	FØ5	EØ2	BØ8	KØ2	JØ5	107	NEW	MØ6		
05		NEW	NEW	E08	BØ7	CØ5	DØ7	L04	L07	MØ5	NØ7	H05	NEW	NEW	
06		NEW	GØ6	E06	EØ3	E04	FØ2	EØ5	JØ2	DØ5	көз	K06	106	NEW	
07	GØ5	NEW	F04	BØ5	GØ4	BØ6	GØ2	D08	102	NØ6	104	NØ5	J04	NEW	105
0 8	GØ8	NEW	KØ4	HØ2	D04	KØ5	H04	F08	H12	K11	D12	H14	K12	NEW	108
0 9	G11	NEW	F12	B11	G12	B10	G14	L08	I14	N10	I12	N11	J12	NEW	I11
10		NEW	G10	E10	E13	D11	F14	E11	J14	E12	K13	K10	I10	NEW	
11		NEW	NEW	KØ8	B09	C11	D09	L12	L09	M11	N09	H11	NEW	NEW	
12			C10	NEW	G09	F11	E14	NØ8	K14	J11	109	NEW	M10		
13				F13	NEW	F09	D10	L11	L10	J09	NEW	J13			
14					NEW										
15							E09	H09	KØ9					1	

Figure 22: UOX

computed geometry data

Parameter	Value (unit)
Number of fuel pins (per assembly)	17x17 - 25
External fuel pin radius	0.40958 (cm)
External clad radius	0.47980 (cm)
Cell pitch (δ)	1.25984 (cm)
Inter assembly water gap ($arepsilon$)	0.25000 (cm)
Network pitch	$17\delta + 2\varepsilon = 21.92 \text{ (cm)}$
Number of assemblies (in the core)	157
Number of bundles	4

Table 4: Geometry data

UOX assembly content with irradiation cycles (350 EFPD)

Figure 23: Actinides (w/o uranium 238)

Figure 24: Minor actinides

MOX assembly content with irradiation cycles (350 EFPD)

Figure 25: Plutonium

Figure 26: Minor actinides

Reflective materials

- MoC (Method of Characteristics)
- One assembly wide
- One homogeneous mixture

Figure 27: Reflective materials calculation geometry

PWR actinids interactions

Figure 28: PWR actinides interaction diagram. Dashed line represents natural decay, solid line neutron capture and the more the box is coloured the more the isotope fissions.