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Motivation and Background

MSRs: GenlV concept with renewed interest
Several start-up companies in North America*
Broad spectrum of design concepts

Limited R&D in the recent past

Outside of nuclear engineering experience base

*Samuel Brinton, “The Advanced Nuclear Industry,” Third Way, www.thirdway.org/report/the-advanced-nuclear-industry
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Specifics of MSR Design

Homogeneous fuel mixture with changing
composition

Fuel circulating in and out of core

Fission products (FPs) in transit, some remain
dissolved, others do not

Off-gassing of Xe-135 and other gaseous FPs
Migration of delayed-neutron precursors
Online fueling and FP reprocessing



Difficulties in Safeguarding/MC&A MSRs

International Safeguards are required for global
deployment of any reactor design
* |AEA significant quantity of Plutonium: 8kg

MSRs have no agreed upon method for safeguarding
Traditional item counting does not apply here

In a loss of the continuum of knowledge, there needs
to be a means of material accountancy in the fuel salt



Depletion Calculation in an MSR
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. Material data retrieved from MSR
library

« Quarter core with Li-F-Be and LEU

« Burned at 20 MW/MTHM in
SCALE/ORIGEN 6.2 for 3 years

« 20 MW reactor power
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Dynamic Modeling Approach

. Methodology inspired
based off of published
MSRE model*

. Lumped-parameter model

« Two liquid lumps for every
solid lump

N -
I
FUEL HEAT Indicates a
Tubes 4
EXCHANGER ] ure time
i

*V. Singh, et. al., “Nonlinear Dynamic Model of Molten Salt Reactor Experiment - Validation and Operational Analysis,” Annals of Nuclear Energy, 113,
177 — 193, (2018).
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Modular Dynamic Modeling

« Model developed in
MATLAB™-Simulink -
« Nominal Power Scaling

« Modular organization T
In1 - Outt /\/ Fuel Inlet Temp Fuel Exit Temp |—

. Plug and play =
components [ —

fu)

Heat Sink
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Frequency Characteristics over
Burnup
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Frequency Characteristics in
Removal
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Change in Frequency
Characteristics
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Removal Compared to Clean Fuel
Salt
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Conclusions

Dynamic behavior of MSRs are relevant to
safeguards

Pu removal leads to characteristic patterns in
frequency response

Frequency characteristics can be established
continuously and while operating

Novel approach to MSR safeguards - avoids core
liguid sampling




Further Discussion

Determine sensitivities to model parameters
« Core size

« External loop length

Evaluation of delayed neutron population in external
loop

* Other forms of diversion (e.g. slow trickle)
Explore other dynamic effects of Pu removal




Backup slides
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Addition of OTSG
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Response to 50 pcm Step Insertion
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Frequency Characteristics
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Change in Frequency
Characteristics
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