Kernels
This page shows the mathematical forms of the governing equation pieces that each kernel class represents. Note that \(u\) is used in some places to denote a generic variable. Elsewhere typical literature symbols are used, e.g. \(\phi\) denotes the neutron flux, \(T\) denotes the temperature, and \(C\) denotes precursor concentrations.
CoupledFissionEigenKernel
\[-\frac{\chi_g^p}{k} \sum_{g' = 1}^G (1 - \beta) \nu \Sigma_{g'}^f \phi_{g'}\]CoupledFissionKernel
\[-\chi_g^p \sum_{g' = 1}^G (1 - \beta) \nu \Sigma_{g'}^f \phi_{g'}\]CoupledScalarAdvection
\[\nabla \cdot \vec{a} u\]DelayedNeutronSource
\[-\chi_g^d \sum_i^I \lambda_i C_i\]DivFreeCoupledScalarAdvection
\[\vec{a} \cdot \nabla u\]FissionHeatSource
\[-\frac{P}{\int_{\partial V} \sum_{g' = 1}^G \nu \Sigma_{g'}^f \phi_{g'} dV} \sum_{g' = 1}^G \nu \Sigma_{g'}^f \phi_{g'}\]where \(P\) is a representation of the total power of the reactor.
GammaHeatSource
\[-\gamma Q_f\]where \(\gamma\) is a factor representing heat dissipation by gamma and neutron irradiation in the moderator and \(Q_f\) is given by:
\[\sum_{g=1}^G \epsilon_{f,g}\Sigma_{f,g}\phi_g\]with \(\epsilon_{f,g}\) the amount of heat given off per fission event.
GroupDiffusion
\[- \nabla \cdot D_g \nabla \phi_g\]InScatter
\[-\sum_{g \ne g'}^G \Sigma_{g'\rightarrow g}^s \phi_{g'}\]NtTimeDerivative
\[\frac{1}{v_g}\frac{\partial \phi_g}{\partial t}\]PrecursorDecay
\[\lambda_i C_i\]PrecursorSource
\[-\sum_{g'= 1}^G \beta_i \nu \Sigma_{g'}^f \phi_{g'}\]ScalarAdvectionArtDiff
\[\nabla \cdot -\delta \nabla u\]where \(\delta\) is an artificial diffusion coefficient determined by:
\[\delta = \frac{|\vec{a}| h_{max}}{2}\]with \(\vec{a}\) the advection velocity and \(h_{max}\) the maximum element length dimension.
ScalarTransportTimeDerivative
\[\frac{\partial u}{\partial t}\]SelfFissionEigenKernel
\[\frac{-\nu_f \Sigma_f \phi}{k}\]SigmaR
\[\Sigma_g^r \phi_g\]TransientFissionHeatSource
\[-\sum_{g=1}^G \epsilon_{f,g}\Sigma_{f,g}\phi_g\]